Formulation and Thermomechanical Characterization of Earth-based Biosourced Composites: Cases of Clay-Hibiscus cannabinus L. Fiber, Clay-sawdust and Clay- Oryza sativa Husk

Sandwidi Sayouba, Haro Kayaba, Dabilgou Téré, Sinon Souleymane, S. Oumar, Koulidiati Jean, Béré Antoine
{"title":"Formulation and Thermomechanical Characterization of Earth-based Biosourced Composites: Cases of Clay-Hibiscus cannabinus L. Fiber, Clay-sawdust and Clay- Oryza sativa Husk","authors":"Sandwidi Sayouba, Haro Kayaba, Dabilgou Téré, Sinon Souleymane, S. Oumar, Koulidiati Jean, Béré Antoine","doi":"10.9734/ajopacs/2023/v11i3204","DOIUrl":null,"url":null,"abstract":"This work concerns the technical study of implementation, thermal and mechanical characterization of a composite material based on clay and plant fibers, in order to meet the need for bioclimatic and sustainable houses. The objective was to find the proportions of clay and fibers to obtain a mixture that would give better thermal properties. A characterization of the thermal properties was made thanks to the KD2 Pro analyzer on samples of various formulas of mixture clay-plant fibers. The results obtained showed that the thermal properties such as thermal conductivity and thermal diffusivity of the clay-fiber mixture samples decrease with the increase of the fiber content in the mixture. Thus, the thermal conductivity of the samples varies from 0.85 to 0.65 W/m.K; from 0.88 to 0.72 W/m.K and from 0.83 to 0.75 W/m.K respectively with Hibiscus cannabinus L. fiber, sawdust and Oryza sativa husk. As for the thermal diffusivity, it varies from 0.37 to 0.25 mm2/s; from 0.45 to 0.30 mm2/s and from 0.47 to 0.27 mm2/s respectively with the addition of Hibiscus cannabinus L. fibers, sawdust and Oryza sativa husk. In sum, the earth samples stabilized with Hibiscus cannabinus L. fibers offer better thermal properties for the construction of bioclimatic houses.","PeriodicalId":8541,"journal":{"name":"Asian Journal of Physical and Chemical Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Physical and Chemical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/ajopacs/2023/v11i3204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work concerns the technical study of implementation, thermal and mechanical characterization of a composite material based on clay and plant fibers, in order to meet the need for bioclimatic and sustainable houses. The objective was to find the proportions of clay and fibers to obtain a mixture that would give better thermal properties. A characterization of the thermal properties was made thanks to the KD2 Pro analyzer on samples of various formulas of mixture clay-plant fibers. The results obtained showed that the thermal properties such as thermal conductivity and thermal diffusivity of the clay-fiber mixture samples decrease with the increase of the fiber content in the mixture. Thus, the thermal conductivity of the samples varies from 0.85 to 0.65 W/m.K; from 0.88 to 0.72 W/m.K and from 0.83 to 0.75 W/m.K respectively with Hibiscus cannabinus L. fiber, sawdust and Oryza sativa husk. As for the thermal diffusivity, it varies from 0.37 to 0.25 mm2/s; from 0.45 to 0.30 mm2/s and from 0.47 to 0.27 mm2/s respectively with the addition of Hibiscus cannabinus L. fibers, sawdust and Oryza sativa husk. In sum, the earth samples stabilized with Hibiscus cannabinus L. fibers offer better thermal properties for the construction of bioclimatic houses.
土基生物源复合材料的配方及热力学特性:以粘土-大麻芙蓉纤维、粘土-锯末和粘土-水稻壳为例
这项工作涉及基于粘土和植物纤维的复合材料的实施、热学和力学特性的技术研究,以满足生物气候和可持续房屋的需求。目的是找到粘土和纤维的比例,以获得一种具有更好热性能的混合物。利用KD2 Pro分析仪对不同配方的粘土-植物混合纤维样品进行了热性能表征。结果表明,随着纤维含量的增加,粘土-纤维混合试样的导热系数和热扩散系数等热性能有所降低。因此,样品的导热系数在0.85 ~ 0.65 W/m.K之间变化;从0.88到0.72瓦/米。从0.83到0.75 W/m。K分别用木槿纤维、锯末和稻壳。热扩散系数为0.37 ~ 0.25 mm2/s;木槿花纤维、木屑和稻谷皮的添加量分别为0.45 ~ 0.30 mm2/s和0.47 ~ 0.27 mm2/s。综上所述,木槿纤维稳定的土样为生物气候房屋的建设提供了更好的热性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信