Unstructured search by random and quantum walk

T. G. Wong
{"title":"Unstructured search by random and quantum walk","authors":"T. G. Wong","doi":"10.26421/QIC22.1-2-4","DOIUrl":null,"url":null,"abstract":"The task of finding an entry in an unsorted list of $N$ elements famously takes $O(N)$ queries to an oracle for a classical computer and $O(\\sqrt{N})$ queries for a quantum computer using Grover's algorithm. Reformulated as a spatial search problem, this corresponds to searching the complete graph, or all-to-all network, for a marked vertex by querying an oracle. In this tutorial, we derive how discrete- and continuous-time (classical) random walks and quantum walks solve this problem in a thorough and pedagogical manner, providing an accessible introduction to how random and quantum walks can be used to search spatial regions. Some of the results are already known, but many are new. For large $N$, the random walks converge to the same evolution, both taking $N \\ln(1/\\epsilon)$ time to reach a success probability of $1-\\epsilon$. In contrast, the discrete-time quantum walk asymptotically takes $\\pi\\sqrt{N}/2\\sqrt{2}$ timesteps to reach a success probability of $1/2$, while the continuous-time quantum walk takes $\\pi\\sqrt{N}/2$ time to reach a success probability of $1$.","PeriodicalId":20904,"journal":{"name":"Quantum Inf. Comput.","volume":"2013 1","pages":"53-85"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Inf. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26421/QIC22.1-2-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The task of finding an entry in an unsorted list of $N$ elements famously takes $O(N)$ queries to an oracle for a classical computer and $O(\sqrt{N})$ queries for a quantum computer using Grover's algorithm. Reformulated as a spatial search problem, this corresponds to searching the complete graph, or all-to-all network, for a marked vertex by querying an oracle. In this tutorial, we derive how discrete- and continuous-time (classical) random walks and quantum walks solve this problem in a thorough and pedagogical manner, providing an accessible introduction to how random and quantum walks can be used to search spatial regions. Some of the results are already known, but many are new. For large $N$, the random walks converge to the same evolution, both taking $N \ln(1/\epsilon)$ time to reach a success probability of $1-\epsilon$. In contrast, the discrete-time quantum walk asymptotically takes $\pi\sqrt{N}/2\sqrt{2}$ timesteps to reach a success probability of $1/2$, while the continuous-time quantum walk takes $\pi\sqrt{N}/2$ time to reach a success probability of $1$.
随机和量子漫步的非结构化搜索
众所周知,在无序的$N$元素列表中查找条目的任务需要对经典计算机的oracle进行$O(N)$查询,并使用Grover算法对量子计算机进行$O(\sqrt{N})$查询。将其重新表述为空间搜索问题,这对应于通过查询oracle来搜索完整图或全对全网络,以查找标记的顶点。在本教程中,我们推导了离散时间和连续时间(经典)随机行走和量子行走如何以彻底和教学的方式解决这个问题,提供了一个可访问的介绍如何使用随机和量子行走来搜索空间区域。其中一些结果是已知的,但许多是新的。对于较大的$N$,随机漫步收敛到相同的进化,都需要$N \ln(1/\epsilon)$时间才能达到$1-\epsilon$的成功概率。相比之下,离散时间量子行走渐近需要$\pi\sqrt{N}/2\sqrt{2}$时间步长才能达到成功概率$1/2$,而连续时间量子行走需要$\pi\sqrt{N}/2$时间步长才能达到成功概率$1$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信