Flow and Convective Exchanges Study in Rotor-Stator System With Eccentric Impinging Jet

IF 2.8 4区 工程技术 Q2 ENGINEERING, MECHANICAL
Chadia Haidar, Abdellatif el Hannaoui, R. Boutarfa, S. Harmand
{"title":"Flow and Convective Exchanges Study in Rotor-Stator System With Eccentric Impinging Jet","authors":"Chadia Haidar, Abdellatif el Hannaoui, R. Boutarfa, S. Harmand","doi":"10.1115/1.4056689","DOIUrl":null,"url":null,"abstract":"\n This paper investigates numerically and experimentally the flow structure and convective heat transfers in an unconfined air gap of a discoid technology rotor–stator system. The cavity between the interdisk is defined by dimensionless spacing varying between G = 0.02 (Haidar et al., 2020, “Numerical and Experimental Study of Flow and Convective Heat Transfer on a Rotor of a Discoidal Machine With Eccentric Impinging Jet,” J. Therm. Sci. Eng. Appl., 12(2), 021012) and G = 0.16. For experimental data, an infrared thermography is applied to obtain a measurement of the rotor surface temperatures and a steady-state energy equation is solved to evaluate the local convective coefficients. A numerical study is performed with a computational code ansys-fluent and based to apply two different turbulence models named the Reynolds stress model (RSM) and k–ε renormalization group (RNG). The results of the numerical simulation are compared with experimental results on heat transfer for the rotational Reynolds number ranging from 2.38×105 to 5.44×105, the jet Reynolds numbers varying from 16.6×103 to 49.6×103, and for dimensionless spacing G between 0.04 and 0.16. Three heat transfer zones on the rotating disk surface are identified. A good accord between a numerical result and experimental data was obtained. Finally, a correlation relating the Nusselt number to the rotational Reynolds number, jet Reynolds number, and dimensionless spacing varying from 0.02 to 0.16 is proposed.","PeriodicalId":15937,"journal":{"name":"Journal of Heat Transfer-transactions of The Asme","volume":"29 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Heat Transfer-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4056689","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates numerically and experimentally the flow structure and convective heat transfers in an unconfined air gap of a discoid technology rotor–stator system. The cavity between the interdisk is defined by dimensionless spacing varying between G = 0.02 (Haidar et al., 2020, “Numerical and Experimental Study of Flow and Convective Heat Transfer on a Rotor of a Discoidal Machine With Eccentric Impinging Jet,” J. Therm. Sci. Eng. Appl., 12(2), 021012) and G = 0.16. For experimental data, an infrared thermography is applied to obtain a measurement of the rotor surface temperatures and a steady-state energy equation is solved to evaluate the local convective coefficients. A numerical study is performed with a computational code ansys-fluent and based to apply two different turbulence models named the Reynolds stress model (RSM) and k–ε renormalization group (RNG). The results of the numerical simulation are compared with experimental results on heat transfer for the rotational Reynolds number ranging from 2.38×105 to 5.44×105, the jet Reynolds numbers varying from 16.6×103 to 49.6×103, and for dimensionless spacing G between 0.04 and 0.16. Three heat transfer zones on the rotating disk surface are identified. A good accord between a numerical result and experimental data was obtained. Finally, a correlation relating the Nusselt number to the rotational Reynolds number, jet Reynolds number, and dimensionless spacing varying from 0.02 to 0.16 is proposed.
偏心冲击射流转子-定子系统流动与对流交换研究
本文对盘式转子-定子系统无侧限气隙内的流动结构和对流换热进行了数值和实验研究。(Haidar et al., 2020,“偏心撞击射流盘面机转子上流动和对流传热的数值和实验研究”,J. Therm.;科学。Eng。达成。, 12(2), 021012), G = 0.16。实验数据采用红外热像仪测量转子表面温度,求解稳态能量方程计算局部对流系数。采用ansys-fluent计算程序,对两种不同的湍流模型——雷诺应力模型(RSM)和k -ε重整化群(RNG)进行了数值研究。对旋转雷诺数2.38×105 ~ 5.44×105、射流雷诺数16.6×103 ~ 49.6×103、无因次间距G在0.04 ~ 0.16范围内换热的数值模拟结果与实验结果进行了比较。在转盘表面确定了三个传热区。数值结果与实验数据吻合较好。最后,提出了努塞尔数与旋转雷诺数、射流雷诺数和无量纲间距在0.02 ~ 0.16之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
182
审稿时长
4.7 months
期刊介绍: Topical areas including, but not limited to: Biological heat and mass transfer; Combustion and reactive flows; Conduction; Electronic and photonic cooling; Evaporation, boiling, and condensation; Experimental techniques; Forced convection; Heat exchanger fundamentals; Heat transfer enhancement; Combined heat and mass transfer; Heat transfer in manufacturing; Jets, wakes, and impingement cooling; Melting and solidification; Microscale and nanoscale heat and mass transfer; Natural and mixed convection; Porous media; Radiative heat transfer; Thermal systems; Two-phase flow and heat transfer. Such topical areas may be seen in: Aerospace; The environment; Gas turbines; Biotechnology; Electronic and photonic processes and equipment; Energy systems, Fire and combustion, heat pipes, manufacturing and materials processing, low temperature and arctic region heat transfer; Refrigeration and air conditioning; Homeland security systems; Multi-phase processes; Microscale and nanoscale devices and processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信