A Symplectic Trigonometrically Fitted Modified Partitioned Runge-Kutta Method for the Numerical Integration of Orbital Problems

Z. Kalogiratou, Th. Monovasilis, T. E. Simos
{"title":"A Symplectic Trigonometrically Fitted Modified Partitioned Runge-Kutta Method for the Numerical Integration of Orbital Problems","authors":"Z. Kalogiratou,&nbsp;Th. Monovasilis,&nbsp;T. E. Simos","doi":"10.1002/anac.200510037","DOIUrl":null,"url":null,"abstract":"<p>The numerical integration of Hamiltonian systems by symplectic modified partitioned Runge-Kutta methods with the trigonometrically fitted property is considered in this paper. We construct new symplectic modified Runge-Kutta method of second order with the trigonometrically fitted property. We apply our new method as well as other existing methods to the numerical integration of the harmonic oscillator, the two dimensional harmonic oscillator, the two-body problem and an orbit problem studied by Stiefel and Bettis. (© 2005 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</p>","PeriodicalId":100108,"journal":{"name":"Applied Numerical Analysis & Computational Mathematics","volume":"2 3","pages":"359-364"},"PeriodicalIF":0.0000,"publicationDate":"2005-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/anac.200510037","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Analysis & Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anac.200510037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

The numerical integration of Hamiltonian systems by symplectic modified partitioned Runge-Kutta methods with the trigonometrically fitted property is considered in this paper. We construct new symplectic modified Runge-Kutta method of second order with the trigonometrically fitted property. We apply our new method as well as other existing methods to the numerical integration of the harmonic oscillator, the two dimensional harmonic oscillator, the two-body problem and an orbit problem studied by Stiefel and Bettis. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

轨道问题数值积分的辛三角拟合修正分区龙格-库塔法
本文用具有三角拟合性质的辛修正分划龙格-库塔方法研究了哈密顿系统的数值积分问题。构造了具有三角拟合性质的二阶辛修正龙格-库塔方法。我们将新方法与已有的方法一起应用于Stiefel和Bettis研究的谐振子、二维谐振子、两体问题和轨道问题的数值积分。(©2005 WILEY-VCH Verlag GmbH &KGaA公司,Weinheim)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信