Yang Wu, O. Sørensen, Nabila Lazreq, Yin Luo, T. Bukovac, V. Arali
{"title":"Zipper Fracturing of Horizontal Cluster Wells: Game Changing Unconventional Fracturing in UAE","authors":"Yang Wu, O. Sørensen, Nabila Lazreq, Yin Luo, T. Bukovac, V. Arali","doi":"10.2118/207523-ms","DOIUrl":null,"url":null,"abstract":"\n Following the increase in demand for natural gas production in the United Arab Emirates (UAE), unconventional hydraulic fracturing in the country has grown exponentially and with it the demand for new technology and efficiency to fast-track the process from fracturing to production. Diyab field has historically been a challenging field for fracturing given the high-pressure/high-temperature (HP/HT) conditions, presence of H2S, and the strike-slip to thrust faulting conditions. Meanwhile, operational efficiency is necessary for economic development of this shale gas reservoir. Hence \"zipper fracturing\" was introduced in UAE with modern technologies to enable both operational efficiency and reservoir stimulation performance.\n The introduction of zipper fracturing in UAE is considered a game changer as it shifted the focus from single-well fracturing to multiple well pads that allow for fracturing to take place in one well while the adjacent well is undergoing a pumpdown plug-and-perf operation using wireline. The overall setup of the zipper surface manifold allowed for faster transitions between the two wells; hence, it also rendered using large storage tanks a viable option since the turnover between stages would be short. Thus, two large modular tanks were installed and utilised to allow 160,000 bbl of water storage on site. Similarly, the use of high-viscosity friction reducer (HVFR) has directly replaced the common friction reducer additive or guar-based gel for shale gas operation. HVFR provides higher viscosity to carry larger proppant concentrations without the reservoir damage, and the flexibility and simplicity of optimizing fluid viscosity on-the-fly to ensure adequate fracture width and balance near-wellbore fracture complexity. Fully utilizing dissolvable fracture plugs was also applied to mitigate the risk of casing deformation and the subsequent difficulty of milling plugs after the fracturing treatment. Furthermore, fracture and completion design based on geologic modelling helped reduce risk of interaction between the hydraulic fractures and geologic abnormalities.\n With the application of advanced logistical planning, personnel proficiency, the zipper operation field process, clustered fracture placement, and the pump-down plug-and-perforation operation, the speed of fracturing reached a maximum of 4.5 stages per day, completing 67 stages in total between two wells placing nearly 27 million lbm of proppant across Hanifa formation. The maximum proppant per stage achieved was 606,000 lbm.\n The novelty of this project lies in the first-time application of zipper fracturing, as well as the first application of dry HVFR fracturing fluid and dissolvable fracturing plugs in UAE. These introductions helped in improving the overall efficiency of hydraulic fracturing in one of UAE's most challenging unconventional basins in the country, which is quickly demanding quicker well turnovers from fracturing to production.","PeriodicalId":10967,"journal":{"name":"Day 1 Mon, November 15, 2021","volume":"73 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Mon, November 15, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/207523-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Following the increase in demand for natural gas production in the United Arab Emirates (UAE), unconventional hydraulic fracturing in the country has grown exponentially and with it the demand for new technology and efficiency to fast-track the process from fracturing to production. Diyab field has historically been a challenging field for fracturing given the high-pressure/high-temperature (HP/HT) conditions, presence of H2S, and the strike-slip to thrust faulting conditions. Meanwhile, operational efficiency is necessary for economic development of this shale gas reservoir. Hence "zipper fracturing" was introduced in UAE with modern technologies to enable both operational efficiency and reservoir stimulation performance.
The introduction of zipper fracturing in UAE is considered a game changer as it shifted the focus from single-well fracturing to multiple well pads that allow for fracturing to take place in one well while the adjacent well is undergoing a pumpdown plug-and-perf operation using wireline. The overall setup of the zipper surface manifold allowed for faster transitions between the two wells; hence, it also rendered using large storage tanks a viable option since the turnover between stages would be short. Thus, two large modular tanks were installed and utilised to allow 160,000 bbl of water storage on site. Similarly, the use of high-viscosity friction reducer (HVFR) has directly replaced the common friction reducer additive or guar-based gel for shale gas operation. HVFR provides higher viscosity to carry larger proppant concentrations without the reservoir damage, and the flexibility and simplicity of optimizing fluid viscosity on-the-fly to ensure adequate fracture width and balance near-wellbore fracture complexity. Fully utilizing dissolvable fracture plugs was also applied to mitigate the risk of casing deformation and the subsequent difficulty of milling plugs after the fracturing treatment. Furthermore, fracture and completion design based on geologic modelling helped reduce risk of interaction between the hydraulic fractures and geologic abnormalities.
With the application of advanced logistical planning, personnel proficiency, the zipper operation field process, clustered fracture placement, and the pump-down plug-and-perforation operation, the speed of fracturing reached a maximum of 4.5 stages per day, completing 67 stages in total between two wells placing nearly 27 million lbm of proppant across Hanifa formation. The maximum proppant per stage achieved was 606,000 lbm.
The novelty of this project lies in the first-time application of zipper fracturing, as well as the first application of dry HVFR fracturing fluid and dissolvable fracturing plugs in UAE. These introductions helped in improving the overall efficiency of hydraulic fracturing in one of UAE's most challenging unconventional basins in the country, which is quickly demanding quicker well turnovers from fracturing to production.