Discovery of Topical Authorities in Instagram

Aditya Pal, Amac Herdagdelen, Sourav Chatterji, Sumit Taank, Deepayan Chakrabarti
{"title":"Discovery of Topical Authorities in Instagram","authors":"Aditya Pal, Amac Herdagdelen, Sourav Chatterji, Sumit Taank, Deepayan Chakrabarti","doi":"10.1145/2872427.2883078","DOIUrl":null,"url":null,"abstract":"Instagram has more than 400 million monthly active accounts who share more than 80 million pictures and videos daily. This large volume of user-generated content is the application's notable strength, but also makes the problem of finding the authoritative users for a given topic challenging. Discovering topical authorities can be useful for providing relevant recommendations to the users. In addition, it can aid in building a catalog of topics and top topical authorities in order to engage new users, and hence provide a solution to the cold-start problem. In this paper, we present a novel approach that we call the Authority Learning Framework (ALF) to find topical authorities in Instagram. ALF is based on the self-described interests of the follower base of popular accounts. We infer regular users' interests from their self-reported biographies that are publicly available and use Wikipedia pages to ground these interests as fine-grained, disambiguated concepts. We propose a generalized label propagation algorithm to propagate the interests over the follower graph to the popular accounts. We show that even if biography-based interests are sparse at an individual user level they provide strong signals to infer the topical authorities and let us obtain a high precision authority list per topic. Our experiments demonstrate that ALF performs significantly better at user recommendation task compared to fine-tuned and competitive methods, via controlled experiments, in-the-wild tests, and over an expert-curated list of topical authorities.","PeriodicalId":20455,"journal":{"name":"Proceedings of the 25th International Conference on World Wide Web","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th International Conference on World Wide Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2872427.2883078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

Instagram has more than 400 million monthly active accounts who share more than 80 million pictures and videos daily. This large volume of user-generated content is the application's notable strength, but also makes the problem of finding the authoritative users for a given topic challenging. Discovering topical authorities can be useful for providing relevant recommendations to the users. In addition, it can aid in building a catalog of topics and top topical authorities in order to engage new users, and hence provide a solution to the cold-start problem. In this paper, we present a novel approach that we call the Authority Learning Framework (ALF) to find topical authorities in Instagram. ALF is based on the self-described interests of the follower base of popular accounts. We infer regular users' interests from their self-reported biographies that are publicly available and use Wikipedia pages to ground these interests as fine-grained, disambiguated concepts. We propose a generalized label propagation algorithm to propagate the interests over the follower graph to the popular accounts. We show that even if biography-based interests are sparse at an individual user level they provide strong signals to infer the topical authorities and let us obtain a high precision authority list per topic. Our experiments demonstrate that ALF performs significantly better at user recommendation task compared to fine-tuned and competitive methods, via controlled experiments, in-the-wild tests, and over an expert-curated list of topical authorities.
在Instagram上发现了局部权威
Instagram每月有超过4亿个活跃账户,每天分享超过8000万张照片和视频。大量用户生成的内容是应用程序的显著优势,但也使得为给定主题查找权威用户的问题具有挑战性。发现专题权威机构有助于向用户提供相关建议。此外,它还可以帮助建立主题目录和顶级主题权威,以吸引新用户,从而为冷启动问题提供解决方案。在本文中,我们提出了一种新颖的方法,我们称之为权威学习框架(ALF)来寻找Instagram中的主题权威。ALF是基于热门账户的追随者基础的自我描述的兴趣。我们从普通用户公开的自我报告传记中推断出他们的兴趣,并使用维基百科页面将这些兴趣作为细粒度的、消除了模糊的概念。我们提出了一种广义标签传播算法,将关注者图上的兴趣传播到热门账户。我们表明,即使基于传记的兴趣在个人用户层面上是稀疏的,它们也提供了推断主题权威的强信号,并让我们获得每个主题的高精度权威列表。通过控制实验、野外测试和专家策划的主题权威列表,我们的实验表明,与微调和竞争方法相比,ALF在用户推荐任务上表现得更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信