N. Denman, M. Amiri, K. Bandura, L. Connor, M. Dobbs, M. Fandino, M. Halpern, A. Hincks, G. Hinshaw, C. Höfer, P. Klages, K. Masui, J. Parra, L. Newburgh, A. Recnik, J. Shaw, K. Sigurdson, Kendrick M. Smith, K. Vanderlinde
{"title":"A GPU-based correlator X-engine implemented on the CHIME Pathfinder","authors":"N. Denman, M. Amiri, K. Bandura, L. Connor, M. Dobbs, M. Fandino, M. Halpern, A. Hincks, G. Hinshaw, C. Höfer, P. Klages, K. Masui, J. Parra, L. Newburgh, A. Recnik, J. Shaw, K. Sigurdson, Kendrick M. Smith, K. Vanderlinde","doi":"10.1109/ASAP.2015.7245702","DOIUrl":null,"url":null,"abstract":"We present the design and implementation of a custom GPU-based compute cluster that provides the correlation X-engine of the CHIME Pathfinder radio telescope. It is among the largest such systems in operation, correlating 32,896 baselines (256 inputs) over 400MHz of radio bandwidth. Making heavy use of consumer-grade parts and a custom software stack, the system was developed at a small fraction of the cost of comparable installations. Unlike existing GPU backends, this system is built around OpenCL kernels running on consumer-level AMD GPUs, taking advantage of low-cost hardware and leveraging packed integer operations to double algorithmic efficiency. The system achieves the required 105 TOPS in a 10kW power envelope, making it one of the most power-efficient X-engines in use today.","PeriodicalId":6642,"journal":{"name":"2015 IEEE 26th International Conference on Application-specific Systems, Architectures and Processors (ASAP)","volume":"73 1","pages":"35-40"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 26th International Conference on Application-specific Systems, Architectures and Processors (ASAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASAP.2015.7245702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
We present the design and implementation of a custom GPU-based compute cluster that provides the correlation X-engine of the CHIME Pathfinder radio telescope. It is among the largest such systems in operation, correlating 32,896 baselines (256 inputs) over 400MHz of radio bandwidth. Making heavy use of consumer-grade parts and a custom software stack, the system was developed at a small fraction of the cost of comparable installations. Unlike existing GPU backends, this system is built around OpenCL kernels running on consumer-level AMD GPUs, taking advantage of low-cost hardware and leveraging packed integer operations to double algorithmic efficiency. The system achieves the required 105 TOPS in a 10kW power envelope, making it one of the most power-efficient X-engines in use today.