Improving Energy Compaction of Adaptive Fourier Decomposition

A. Borowicz
{"title":"Improving Energy Compaction of Adaptive Fourier Decomposition","authors":"A. Borowicz","doi":"10.23919/Eusipco47968.2020.9287567","DOIUrl":null,"url":null,"abstract":"Adaptive Fourier decomposition (AFD) provides an expansion of an analytic function into a sum of basic signals, called mono-components. Unlike the Fourier series decomposition, the AFD is based on an adaptive rational orthogonal system, hence it is better suited for analyzing non-stationary data. The most popular algorithm for the AFD decomposes any signal in such a way that the energy of the low-frequency components is maximized. Unfortunately, this results in poor energy compaction of high-frequency components. In this paper, we develop a novel algorithm for the AFD. The key idea is to maximize the energy of any components no matter how big or small the corresponding frequencies are. A comparative evaluation was conducted of the signal reconstruction efficiency of the proposed approach and several conventional algorithms by using speech recordings. The experimental results show that with the new algorithm, it is possible to get a better performance in terms of the reconstruction quality and energy compaction property.","PeriodicalId":6705,"journal":{"name":"2020 28th European Signal Processing Conference (EUSIPCO)","volume":"62 1","pages":"2348-2352"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/Eusipco47968.2020.9287567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Adaptive Fourier decomposition (AFD) provides an expansion of an analytic function into a sum of basic signals, called mono-components. Unlike the Fourier series decomposition, the AFD is based on an adaptive rational orthogonal system, hence it is better suited for analyzing non-stationary data. The most popular algorithm for the AFD decomposes any signal in such a way that the energy of the low-frequency components is maximized. Unfortunately, this results in poor energy compaction of high-frequency components. In this paper, we develop a novel algorithm for the AFD. The key idea is to maximize the energy of any components no matter how big or small the corresponding frequencies are. A comparative evaluation was conducted of the signal reconstruction efficiency of the proposed approach and several conventional algorithms by using speech recordings. The experimental results show that with the new algorithm, it is possible to get a better performance in terms of the reconstruction quality and energy compaction property.
改进自适应傅里叶分解的能量压缩
自适应傅立叶分解(AFD)将解析函数扩展为称为单分量的基本信号和。与傅立叶级数分解不同,AFD基于自适应有理正交系统,因此更适合于分析非平稳数据。最流行的AFD算法分解任何信号的方式是使低频分量的能量最大化。不幸的是,这导致高频元件的能量压缩不良。在本文中,我们开发了一种新的AFD算法。关键思想是使任何元件的能量最大化,不管相应的频率有多大或多小。利用语音记录对比评价了该方法与几种传统算法的信号重构效率。实验结果表明,新算法在重构质量和能量压缩性能方面都有较好的表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信