The impact of quarantine on Covid-19 infections

Q3 Mathematics
P. Marshall
{"title":"The impact of quarantine on Covid-19 infections","authors":"P. Marshall","doi":"10.1515/em-2020-0038","DOIUrl":null,"url":null,"abstract":"Abstract Objectives: Coronavirushas had profound effects on people’s lives and the economy of many countries, generating controversy between the need to establish quarantines and other social distancing measures to protect people’s health and the need to reactivate the economy. This study proposes and applies a modification of the SIR infection model to describe the evolution of coronavirus infections and to measure the effect of quarantine on the number of people infected. Methods: Two hypotheses, not necessarily mutually exclusive, are proposed for the impact of quarantines. According to the first hypothesis, quarantine reduces the infection rate, delaying new infections over time without modifying the total number of people infected at the end of the wave. The second hypothesis establishes that quarantine reduces the population infected in the wave. The two hypotheses are tested with data for a sample of 10 districts in Santiago, Chile. Results: The results of applying the methodology show that the proposed model describes well the evolution of infections at the district level. The data shows evidence in favor of the first hypothesis, quarantine reduces the infection rate; and not in favor of the second hypothesis, that quarantine reduces the population infected. Districts of higher socio-economic levels have a lower infection rate, and quarantine is more effective. Conclusions: Quarantine, in most districts, does not reduce the total number of people infected in the wave; it only reduces the rate at which they are infected. The reduction in the infection rate avoids peaks that may collapse the health system.","PeriodicalId":37999,"journal":{"name":"Epidemiologic Methods","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemiologic Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/em-2020-0038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 6

Abstract

Abstract Objectives: Coronavirushas had profound effects on people’s lives and the economy of many countries, generating controversy between the need to establish quarantines and other social distancing measures to protect people’s health and the need to reactivate the economy. This study proposes and applies a modification of the SIR infection model to describe the evolution of coronavirus infections and to measure the effect of quarantine on the number of people infected. Methods: Two hypotheses, not necessarily mutually exclusive, are proposed for the impact of quarantines. According to the first hypothesis, quarantine reduces the infection rate, delaying new infections over time without modifying the total number of people infected at the end of the wave. The second hypothesis establishes that quarantine reduces the population infected in the wave. The two hypotheses are tested with data for a sample of 10 districts in Santiago, Chile. Results: The results of applying the methodology show that the proposed model describes well the evolution of infections at the district level. The data shows evidence in favor of the first hypothesis, quarantine reduces the infection rate; and not in favor of the second hypothesis, that quarantine reduces the population infected. Districts of higher socio-economic levels have a lower infection rate, and quarantine is more effective. Conclusions: Quarantine, in most districts, does not reduce the total number of people infected in the wave; it only reduces the rate at which they are infected. The reduction in the infection rate avoids peaks that may collapse the health system.
隔离对Covid-19感染的影响
摘要目的:新冠肺炎疫情对许多国家人民的生活和经济产生了深远影响,引发了是否需要建立隔离等社会距离措施以保护人民健康与是否需要重振经济之间的争议。本研究提出并应用SIR感染模型的修改来描述冠状病毒感染的演变,并衡量隔离对感染人数的影响。方法:对隔离的影响提出了两种假设,但不一定相互排斥。根据第一种假设,隔离降低了感染率,随着时间的推移推迟了新的感染,而不会改变疫情结束时感染的总人数。第二种假设认为,隔离减少了波浪中的感染人口。这两种假设用智利圣地亚哥10个地区的样本数据进行了检验。结果:应用该方法的结果表明,所提出的模型很好地描述了地区一级感染的演变。数据显示支持第一种假设的证据,隔离降低了感染率;不支持第二个假设,隔离减少了感染人口。社会经济水平越高的地区,感染率越低,隔离效果越好。结论:大多数地区的隔离并没有减少疫情中感染的总人数;这只会降低他们被感染的几率。感染率的降低避免了可能导致卫生系统崩溃的高峰。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Epidemiologic Methods
Epidemiologic Methods Mathematics-Applied Mathematics
CiteScore
2.10
自引率
0.00%
发文量
7
期刊介绍: Epidemiologic Methods (EM) seeks contributions comparable to those of the leading epidemiologic journals, but also invites papers that may be more technical or of greater length than what has traditionally been allowed by journals in epidemiology. Applications and examples with real data to illustrate methodology are strongly encouraged but not required. Topics. genetic epidemiology, infectious disease, pharmaco-epidemiology, ecologic studies, environmental exposures, screening, surveillance, social networks, comparative effectiveness, statistical modeling, causal inference, measurement error, study design, meta-analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信