Grey Support Vector Regression Model with Applications to China Tourists Forecasting in Taiwan

Q3 Engineering
Ruey-Chyn Tsaur, S. Chan
{"title":"Grey Support Vector Regression Model with Applications to China Tourists Forecasting in Taiwan","authors":"Ruey-Chyn Tsaur, S. Chan","doi":"10.6186/IJIMS.2014.25.2.3","DOIUrl":null,"url":null,"abstract":"Support vector regression (SVR) has been successful in function approximation for forecasting analysis based on the idea of structural risk minimization. SVR has perfect forecasting performance by employing in large sample size for training and solving its parameters, where the SVR is difficult to be applied in limited time series data with some fluctuated points; in contrast, grey model has better forecasting performance in limited time series data. In order to cope with this problem, we use both of the advantages of support vector regression model and grey theory to construct a new grey support vector regression (GSVR) model for solving limited data with some fluctuations. Finally, we demonstrate an application for planning China tourism demand for improving the tourism infrastructure in Taiwan with a better forecasting performance.","PeriodicalId":39953,"journal":{"name":"International Journal of Information and Management Sciences","volume":"74 1","pages":"121-138"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information and Management Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6186/IJIMS.2014.25.2.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

Abstract

Support vector regression (SVR) has been successful in function approximation for forecasting analysis based on the idea of structural risk minimization. SVR has perfect forecasting performance by employing in large sample size for training and solving its parameters, where the SVR is difficult to be applied in limited time series data with some fluctuated points; in contrast, grey model has better forecasting performance in limited time series data. In order to cope with this problem, we use both of the advantages of support vector regression model and grey theory to construct a new grey support vector regression (GSVR) model for solving limited data with some fluctuations. Finally, we demonstrate an application for planning China tourism demand for improving the tourism infrastructure in Taiwan with a better forecasting performance.
灰色支持向量回归模型在台湾大陆游客预测中的应用
基于结构风险最小化思想的支持向量回归(SVR)在预测分析中的函数逼近方面取得了成功。SVR采用大样本量进行训练并求解其参数,具有较好的预测性能,但对于有波动点的有限时间序列数据难以应用;相比之下,灰色模型在有限时间序列数据中具有更好的预测性能。为了解决这一问题,我们利用支持向量回归模型和灰色理论的优点,构建了一种新的灰色支持向量回归(GSVR)模型,用于求解有限数据和一些波动。最后,本研究以中国大陆旅游需求规划为例,对改善台湾旅游基础设施的预测效果较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Information and Management Sciences
International Journal of Information and Management Sciences Engineering-Industrial and Manufacturing Engineering
CiteScore
0.90
自引率
0.00%
发文量
0
期刊介绍: - Information Management - Management Sciences - Operation Research - Decision Theory - System Theory - Statistics - Business Administration - Finance - Numerical computations - Statistical simulations - Decision support system - Expert system - Knowledge-based systems - Artificial intelligence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信