Range Avoidance for Constant-Depth Circuits: Hardness and Algorithms

Karthik Gajulapalli, Alexander Golovnev, Satyajeet Nagargoje, Sidhant Saraogi
{"title":"Range Avoidance for Constant-Depth Circuits: Hardness and Algorithms","authors":"Karthik Gajulapalli, Alexander Golovnev, Satyajeet Nagargoje, Sidhant Saraogi","doi":"10.48550/arXiv.2303.05044","DOIUrl":null,"url":null,"abstract":"Range Avoidance (AVOID) is a total search problem where, given a Boolean circuit $C\\colon\\{0,1\\}^n\\to\\{0,1\\}^m$, $m>n$, the task is to find a $y\\in\\{0,1\\}^m$ outside the range of $C$. For an integer $k\\geq 2$, $\\mathrm{NC}^0_k$-AVOID is a special case of AVOID where each output bit of $C$ depends on at most $k$ input bits. While there is a very natural randomized algorithm for AVOID, a deterministic algorithm for the problem would have many interesting consequences. Ren, Santhanam, and Wang (FOCS 2022) and Guruswami, Lyu, and Wang (RANDOM 2022) proved that explicit constructions of functions of high formula complexity, rigid matrices, and optimal linear codes, reduce to $\\mathrm{NC}^0_4$-AVOID, thus establishing conditional hardness of the $\\mathrm{NC}^0_4$-AVOID problem. On the other hand, $\\mathrm{NC}^0_2$-AVOID admits polynomial-time algorithms, leaving the question about the complexity of $\\mathrm{NC}^0_3$-AVOID open. We give the first reduction of an explicit construction question to $\\mathrm{NC}^0_3$-AVOID. Specifically, we prove that a polynomial-time algorithm (with an $\\mathrm{NP}$ oracle) for $\\mathrm{NC}^0_3$-AVOID for the case of $m=n+n^{2/3}$ would imply an explicit construction of a rigid matrix, and, thus, a super-linear lower bound on the size of log-depth circuits. We also give deterministic polynomial-time algorithms for all $\\mathrm{NC}^0_k$-AVOID problems for $m\\geq n^{k-1}/\\log(n)$. Prior work required an $\\mathrm{NP}$ oracle, and required larger stretch, $m \\geq n^{k-1}$.","PeriodicalId":11639,"journal":{"name":"Electron. Colloquium Comput. Complex.","volume":"5 1","pages":"65:1-65:18"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron. Colloquium Comput. Complex.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2303.05044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Range Avoidance (AVOID) is a total search problem where, given a Boolean circuit $C\colon\{0,1\}^n\to\{0,1\}^m$, $m>n$, the task is to find a $y\in\{0,1\}^m$ outside the range of $C$. For an integer $k\geq 2$, $\mathrm{NC}^0_k$-AVOID is a special case of AVOID where each output bit of $C$ depends on at most $k$ input bits. While there is a very natural randomized algorithm for AVOID, a deterministic algorithm for the problem would have many interesting consequences. Ren, Santhanam, and Wang (FOCS 2022) and Guruswami, Lyu, and Wang (RANDOM 2022) proved that explicit constructions of functions of high formula complexity, rigid matrices, and optimal linear codes, reduce to $\mathrm{NC}^0_4$-AVOID, thus establishing conditional hardness of the $\mathrm{NC}^0_4$-AVOID problem. On the other hand, $\mathrm{NC}^0_2$-AVOID admits polynomial-time algorithms, leaving the question about the complexity of $\mathrm{NC}^0_3$-AVOID open. We give the first reduction of an explicit construction question to $\mathrm{NC}^0_3$-AVOID. Specifically, we prove that a polynomial-time algorithm (with an $\mathrm{NP}$ oracle) for $\mathrm{NC}^0_3$-AVOID for the case of $m=n+n^{2/3}$ would imply an explicit construction of a rigid matrix, and, thus, a super-linear lower bound on the size of log-depth circuits. We also give deterministic polynomial-time algorithms for all $\mathrm{NC}^0_k$-AVOID problems for $m\geq n^{k-1}/\log(n)$. Prior work required an $\mathrm{NP}$ oracle, and required larger stretch, $m \geq n^{k-1}$.
恒深电路的距离避免:硬度和算法
范围回避(AVOID)是一个全搜索问题,其中给定一个布尔电路$C\colon\{0,1\}^n\to\{0,1\}^m$, $m>n$,任务是在$C$范围之外找到一个$y\in\{0,1\}^m$。对于整数$k\geq 2$, $\mathrm{NC}^0_k$ -AVOID是一种特殊情况,其中$C$的每个输出位最多依赖于$k$个输入位。虽然对于AVOID有一种非常自然的随机算法,但对于该问题的确定性算法将产生许多有趣的结果。Ren, Santhanam, and Wang (FOCS 2022)和Guruswami, Lyu, and Wang (RANDOM 2022)证明了高公式复杂度的函数,刚性矩阵和最优线性编码的显式构造可以减少到$\mathrm{NC}^0_4$ -AVOID,从而建立了$\mathrm{NC}^0_4$ -AVOID问题的条件硬度。另一方面,$\mathrm{NC}^0_2$ -AVOID承认多项式时间算法,留下了关于$\mathrm{NC}^0_3$ -AVOID复杂性的问题。我们给出一个显式结构问题的第一个约简为$\mathrm{NC}^0_3$ -AVOID。具体地说,我们证明了$\mathrm{NC}^0_3$ -AVOID的多项式时间算法(使用$\mathrm{NP}$ oracle)对于$m=n+n^{2/3}$的情况将意味着刚性矩阵的显式构造,并且因此,对数深度电路大小的超线性下界。我们还给出了$m\geq n^{k-1}/\log(n)$的所有$\mathrm{NC}^0_k$ -AVOID问题的确定性多项式时间算法。之前的工作需要$\mathrm{NP}$ oracle,并且需要更大的扩展$m \geq n^{k-1}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信