{"title":"CORMS: a GitHub and Gerrit based hybrid code reviewer recommendation approach for modern code review","authors":"Prahar Pandya, Saurabh Tiwari","doi":"10.1145/3540250.3549115","DOIUrl":null,"url":null,"abstract":"Modern Code review (MCR) techniques are widely adopted in both open-source software platforms and organizations to ensure the quality of their software products. However, the selection of reviewers for code review is cumbersome with the increasing size of development teams. The recommendation of inappropriate reviewers for code review can take more time and effort to complete the task effectively. In this paper, we extended the baseline of reviewers' recommendation framework - RevFinder - to handle issues with newly created files, retired reviewers, the external validity of results, and the accuracies of the state-of-the-art RevFinder. Our proposed hybrid approach, CORMS, works on similarity analysis to compute similarities among file paths, projects/sub-projects, author information, and prediction models to recommend reviewers based on the subject of the change. We conducted a detailed analysis on the widely used 20 projects of both Gerrit and GitHub to compare our results with RevFinder. Our results reveal that on average, CORMS, can achieve top-1, top-3, top-5, and top-10 accuracies, and Mean Reciprocal Rank (MRR) of 45.1%, 67.5%, 74.6%, 79.9% and 0.58 for the 20 projects, consequently improves the RevFinder approach by 44.9%, 34.4%, 20.8%, 12.3% and 18.4%, respectively.","PeriodicalId":68155,"journal":{"name":"软件产业与工程","volume":"274 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"软件产业与工程","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1145/3540250.3549115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Modern Code review (MCR) techniques are widely adopted in both open-source software platforms and organizations to ensure the quality of their software products. However, the selection of reviewers for code review is cumbersome with the increasing size of development teams. The recommendation of inappropriate reviewers for code review can take more time and effort to complete the task effectively. In this paper, we extended the baseline of reviewers' recommendation framework - RevFinder - to handle issues with newly created files, retired reviewers, the external validity of results, and the accuracies of the state-of-the-art RevFinder. Our proposed hybrid approach, CORMS, works on similarity analysis to compute similarities among file paths, projects/sub-projects, author information, and prediction models to recommend reviewers based on the subject of the change. We conducted a detailed analysis on the widely used 20 projects of both Gerrit and GitHub to compare our results with RevFinder. Our results reveal that on average, CORMS, can achieve top-1, top-3, top-5, and top-10 accuracies, and Mean Reciprocal Rank (MRR) of 45.1%, 67.5%, 74.6%, 79.9% and 0.58 for the 20 projects, consequently improves the RevFinder approach by 44.9%, 34.4%, 20.8%, 12.3% and 18.4%, respectively.