Lu Cai, Jihua Chen, David Johnson, Z. Tu, Y. Huang
{"title":"Effect of tail fin loss on swimming capability and tail beat frequency of juvenile black carp Mylopharyngodon piceus","authors":"Lu Cai, Jihua Chen, David Johnson, Z. Tu, Y. Huang","doi":"10.3354/ab00727","DOIUrl":null,"url":null,"abstract":"Fin clipping is a common practice in fisheries management, and hatchery fish are often marked this way. In the wild, the tail (caudal) fin may be damaged or lost to predation or disease. Because the tail fin is important to fish swimming behavior and ability, this study was designed to examine the effects of partial and complete loss of the tail fin on the swimming ability of juvenile black carp Mylopharyngodon piceus. Swimming speed and tail beat frequency were measured for 3 groups (intact tail fin, partial tail fin, no tail fin) using a stepped velocity test conducted in a fish respirometer. We found that critical swimming speed (Ucrit) and burst speed (Uburst) decreased slightly in the partial fin group and significantly in the no fin group. In the group with no tail fin, Uburst decreased more than Ucrit, clearly reducing the ability to avoid predators. Moreover, mean tail beat frequency (TBFmean), Ucrit and Uburst all decreased slightly in the partial fin group and significantly in the no fin group. A decrease in tail beat force and TBF both reduce swimming capability. These findings contribute to developing our understanding of the relationship between fish tail fins and swimming.","PeriodicalId":8111,"journal":{"name":"Aquatic Biology","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2020-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3354/ab00727","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 5
Abstract
Fin clipping is a common practice in fisheries management, and hatchery fish are often marked this way. In the wild, the tail (caudal) fin may be damaged or lost to predation or disease. Because the tail fin is important to fish swimming behavior and ability, this study was designed to examine the effects of partial and complete loss of the tail fin on the swimming ability of juvenile black carp Mylopharyngodon piceus. Swimming speed and tail beat frequency were measured for 3 groups (intact tail fin, partial tail fin, no tail fin) using a stepped velocity test conducted in a fish respirometer. We found that critical swimming speed (Ucrit) and burst speed (Uburst) decreased slightly in the partial fin group and significantly in the no fin group. In the group with no tail fin, Uburst decreased more than Ucrit, clearly reducing the ability to avoid predators. Moreover, mean tail beat frequency (TBFmean), Ucrit and Uburst all decreased slightly in the partial fin group and significantly in the no fin group. A decrease in tail beat force and TBF both reduce swimming capability. These findings contribute to developing our understanding of the relationship between fish tail fins and swimming.
期刊介绍:
AB publishes rigorously refereed and carefully selected Feature Articles, Research Articles, Reviews and Notes, as well as Comments/Reply Comments (for details see MEPS 228:1), Theme Sections, Opinion Pieces (previously called ''As I See It'') (for details consult the Guidelines for Authors) concerned with the biology, physiology, biochemistry and genetics (including the ’omics‘) of all aquatic organisms under laboratory and field conditions, and at all levels of organisation and investigation. Areas covered include:
-Biological aspects of biota: Evolution and speciation; life histories; biodiversity, biogeography and phylogeography; population genetics; biological connectedness between marine and freshwater biota; paleobiology of aquatic environments; invasive species.
-Biochemical and physiological aspects of aquatic life; synthesis and conversion of organic matter (mechanisms of auto- and heterotrophy, digestion, respiration, nutrition); thermo-, ion, osmo- and volume-regulation; stress and stress resistance; metabolism and energy budgets; non-genetic and genetic adaptation.
-Species interactions: Environment–organism and organism–organism interrelationships; predation: defenses (physical and chemical); symbioses.
-Molecular biology of aquatic life.
-Behavior: Orientation in space and time; migrations; feeding and reproductive behavior; agonistic behavior.
-Toxicology and water-quality effects on organisms; anthropogenic impacts on aquatic biota (e.g. pollution, fisheries); stream regulation and restoration.
-Theoretical biology: mathematical modelling of biological processes and species interactions.
-Methodology and equipment employed in aquatic biological research; underwater exploration and experimentation.
-Exploitation of aquatic biota: Fisheries; cultivation of aquatic organisms: use, management, protection and conservation of living aquatic resources.
-Reproduction and development in marine, brackish and freshwater organisms