Proof Theory of Partially Normal Skew Monoidal Categories

Tarmo Uustalu, Niccolò Veltri, N. Zeilberger
{"title":"Proof Theory of Partially Normal Skew Monoidal Categories","authors":"Tarmo Uustalu, Niccolò Veltri, N. Zeilberger","doi":"10.4204/EPTCS.333.16","DOIUrl":null,"url":null,"abstract":"The skew monoidal categories of Szlach\\'anyi are a weakening of monoidal categories where the three structural laws of left and right unitality and associativity are not required to be isomorphisms but merely transformations in a particular direction. In previous work, we showed that the free skew monoidal category on a set of generating objects can be concretely presented as a sequent calculus. This calculus enjoys cut elimination and admits focusing, i.e. a subsystem of canonical derivations, which solves the coherence problem for skew monoidal categories. In this paper, we develop sequent calculi for partially normal skew monoidal categories, which are skew monoidal categories with one or more structural laws invertible. Each normality condition leads to additional inference rules and equations on them. We prove cut elimination and we show that the calculi admit focusing. The result is a family of sequent calculi between those of skew monoidal categories and (fully normal) monoidal categories. On the level of derivability, these define 8 weakenings of the (unit,tensor) fragment of intuitionistic non-commutative linear logic.","PeriodicalId":11810,"journal":{"name":"essentia law Merchant Shipping Act 1995","volume":"2012 1","pages":"230-246"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"essentia law Merchant Shipping Act 1995","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.333.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The skew monoidal categories of Szlach\'anyi are a weakening of monoidal categories where the three structural laws of left and right unitality and associativity are not required to be isomorphisms but merely transformations in a particular direction. In previous work, we showed that the free skew monoidal category on a set of generating objects can be concretely presented as a sequent calculus. This calculus enjoys cut elimination and admits focusing, i.e. a subsystem of canonical derivations, which solves the coherence problem for skew monoidal categories. In this paper, we develop sequent calculi for partially normal skew monoidal categories, which are skew monoidal categories with one or more structural laws invertible. Each normality condition leads to additional inference rules and equations on them. We prove cut elimination and we show that the calculi admit focusing. The result is a family of sequent calculi between those of skew monoidal categories and (fully normal) monoidal categories. On the level of derivability, these define 8 weakenings of the (unit,tensor) fragment of intuitionistic non-commutative linear logic.
部分正态偏一元范畴的证明理论
Szlach\'anyi的偏一元范畴是对一元范畴的弱化,其中左、右幺正性和结合性三个结构定律不要求同构,而仅仅是在特定方向上的变换。在以前的工作中,我们证明了一组生成对象上的自由偏单轴范畴可以具体地表示为一个序演算。这种演算具有切消性和可聚焦性,即正则导数子系统,解决了偏一元范畴的相干性问题。本文给出了具有一个或多个结构律可逆的偏单类的部分正态偏单类的序列演算。每个正态性条件导致附加的推理规则和方程。我们证明了切割消除,并证明了结石可以聚焦。结果是在偏一元范畴和(完全正规)一元范畴之间的一个序演族。在可导性的层面上,定义了直觉非交换线性逻辑(单位,张量)片段的8种弱化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信