Pointwise estimates of the solution to one dimensional compressible Naiver-Stokes equations in half space

Hai-liang Li, H. Tang, Haitao Wang
{"title":"Pointwise estimates of the solution to one dimensional compressible Naiver-Stokes equations in half space","authors":"Hai-liang Li, H. Tang, Haitao Wang","doi":"10.3934/dcds.2021205","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>In this paper, we study the global existence and pointwise behavior of classical solution to one dimensional isentropic Navier-Stokes equations with mixed type boundary condition in half space. Based on classical energy method for half space problem, the global existence of classical solution is established firstly. Through analyzing the quantitative relationships of Green's function between Cauchy problem and initial boundary value problem, we observe that the leading part of Green's function for the initial boundary value problem is composed of three items: delta function, diffusive heat kernel, and reflected term from the boundary. Then applying Duhamel's principle yields the explicit expression of solution. With the help of accurate estimates for nonlinear wave coupling and the elliptic structure of velocity, the pointwise behavior of the solution is obtained under some appropriate assumptions on the initial data. Our results prove that the solution converges to the equilibrium state at the optimal decay rate <inline-formula><tex-math id=\"M1\">\\begin{document}$ (1+t)^{-\\frac{1}{2}} $\\end{document}</tex-math></inline-formula> in <inline-formula><tex-math id=\"M2\">\\begin{document}$ L^\\infty $\\end{document}</tex-math></inline-formula> norm.</p>","PeriodicalId":11254,"journal":{"name":"Discrete & Continuous Dynamical Systems - S","volume":"68 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Continuous Dynamical Systems - S","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcds.2021205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we study the global existence and pointwise behavior of classical solution to one dimensional isentropic Navier-Stokes equations with mixed type boundary condition in half space. Based on classical energy method for half space problem, the global existence of classical solution is established firstly. Through analyzing the quantitative relationships of Green's function between Cauchy problem and initial boundary value problem, we observe that the leading part of Green's function for the initial boundary value problem is composed of three items: delta function, diffusive heat kernel, and reflected term from the boundary. Then applying Duhamel's principle yields the explicit expression of solution. With the help of accurate estimates for nonlinear wave coupling and the elliptic structure of velocity, the pointwise behavior of the solution is obtained under some appropriate assumptions on the initial data. Our results prove that the solution converges to the equilibrium state at the optimal decay rate \begin{document}$ (1+t)^{-\frac{1}{2}} $\end{document} in \begin{document}$ L^\infty $\end{document} norm.

半空间中一维可压缩naver - stokes方程解的点态估计
In this paper, we study the global existence and pointwise behavior of classical solution to one dimensional isentropic Navier-Stokes equations with mixed type boundary condition in half space. Based on classical energy method for half space problem, the global existence of classical solution is established firstly. Through analyzing the quantitative relationships of Green's function between Cauchy problem and initial boundary value problem, we observe that the leading part of Green's function for the initial boundary value problem is composed of three items: delta function, diffusive heat kernel, and reflected term from the boundary. Then applying Duhamel's principle yields the explicit expression of solution. With the help of accurate estimates for nonlinear wave coupling and the elliptic structure of velocity, the pointwise behavior of the solution is obtained under some appropriate assumptions on the initial data. Our results prove that the solution converges to the equilibrium state at the optimal decay rate \begin{document}$ (1+t)^{-\frac{1}{2}} $\end{document} in \begin{document}$ L^\infty $\end{document} norm.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信