Fluctuations in the number of nodal domains

F. Nazarov, M. Sodin
{"title":"Fluctuations in the number of nodal domains","authors":"F. Nazarov, M. Sodin","doi":"10.1063/5.0018588","DOIUrl":null,"url":null,"abstract":"We show that the variance of the number of connected components of the zero set of the two-dimensional Gaussian ensemble of random spherical harmonics of degree n grows as a positive power of n. The proof uses no special properties of spherical harmonics and works for any sufficiently regular ensemble of Gaussian random functions on the two-dimensional sphere with distribution invariant with respect to isometries of the sphere. \nOur argument connects the fluctuations in the number of nodal lines with those in a random loop ensemble on planar graphs of degree four, which can be viewed as a step towards justification of the Bogomolny-Schmit heuristics.","PeriodicalId":8470,"journal":{"name":"arXiv: Probability","volume":"73 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0018588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

We show that the variance of the number of connected components of the zero set of the two-dimensional Gaussian ensemble of random spherical harmonics of degree n grows as a positive power of n. The proof uses no special properties of spherical harmonics and works for any sufficiently regular ensemble of Gaussian random functions on the two-dimensional sphere with distribution invariant with respect to isometries of the sphere. Our argument connects the fluctuations in the number of nodal lines with those in a random loop ensemble on planar graphs of degree four, which can be viewed as a step towards justification of the Bogomolny-Schmit heuristics.
节点域数量的波动
我们证明了n次随机球谐波的二维高斯系综的零集的连通分量的方差以n的正幂增长。该证明不使用球谐波的特殊性质,并且适用于二维球面上任意充分正则的高斯随机函数系综,该系综相对于球面的等距分布不变。我们的论证将节点线数量的波动与四次平面图上随机环路系综的波动联系起来,这可以看作是证明Bogomolny-Schmit启发式的一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信