Qixing Wang, Fei Miao, Jie Wu, Yuanfang Niu, Chengliang Wang, N. Lownes
{"title":"Dynamic Pricing for Autonomous Vehicle E-hailing Services Reliability and Performance Improvement","authors":"Qixing Wang, Fei Miao, Jie Wu, Yuanfang Niu, Chengliang Wang, N. Lownes","doi":"10.1109/COASE.2019.8843122","DOIUrl":null,"url":null,"abstract":"As Autonomous Vehicles (AVs) become possible for E-hailing services operate, especially when telecom companies start deploying next-generation wireless networks (known as 5G), many new technologies may be applied in these vehicles. Dynamic-route-switching is one of these technologies, which could help vehicles find the best possible route based on real-time traffic information. However, allowing all AVs to choose their own optimal routes is not the best solution for a complex city network, since each vehicle ignores its negative effect on the road system due to the additional congestion it creates. As a result, with this system, some of the links may become over-congested, causing the whole road network system performance to degrade. Meanwhile, the travel time reliability, especially during the peak hours, is an essential factor to improve the customers’ ride experience. Unfortunately, these two issues have received relatively less attention. In this paper, we design a link-based dynamic pricing model to improve the road network system and travel time reliability at the same time. In this approach, we assume that all links are eligible with the dynamic pricing, and AVs will be perfect informed with update traffic condition and follow the dynamic road pricing. A heuristic approach is developed to address this computationally difficult problem. The output includes link-based surcharge, new travel demand and traffic condition which would improve the system performance close to the System Optimal (SO) solution and maintain the travel time reliability. Finally, we evaluate the effectiveness and efficiency of the proposed model to the well-known test Sioux Falls network.","PeriodicalId":6695,"journal":{"name":"2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)","volume":"17 1","pages":"948-953"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COASE.2019.8843122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
As Autonomous Vehicles (AVs) become possible for E-hailing services operate, especially when telecom companies start deploying next-generation wireless networks (known as 5G), many new technologies may be applied in these vehicles. Dynamic-route-switching is one of these technologies, which could help vehicles find the best possible route based on real-time traffic information. However, allowing all AVs to choose their own optimal routes is not the best solution for a complex city network, since each vehicle ignores its negative effect on the road system due to the additional congestion it creates. As a result, with this system, some of the links may become over-congested, causing the whole road network system performance to degrade. Meanwhile, the travel time reliability, especially during the peak hours, is an essential factor to improve the customers’ ride experience. Unfortunately, these two issues have received relatively less attention. In this paper, we design a link-based dynamic pricing model to improve the road network system and travel time reliability at the same time. In this approach, we assume that all links are eligible with the dynamic pricing, and AVs will be perfect informed with update traffic condition and follow the dynamic road pricing. A heuristic approach is developed to address this computationally difficult problem. The output includes link-based surcharge, new travel demand and traffic condition which would improve the system performance close to the System Optimal (SO) solution and maintain the travel time reliability. Finally, we evaluate the effectiveness and efficiency of the proposed model to the well-known test Sioux Falls network.