Contractive Rectifier Networks for Nonlinear Maximum Margin Classification

S. An, Munawar Hayat, S. H. Khan, Bennamoun, F. Boussaïd, Ferdous Sohel
{"title":"Contractive Rectifier Networks for Nonlinear Maximum Margin Classification","authors":"S. An, Munawar Hayat, S. H. Khan, Bennamoun, F. Boussaïd, Ferdous Sohel","doi":"10.1109/ICCV.2015.289","DOIUrl":null,"url":null,"abstract":"To find the optimal nonlinear separating boundary with maximum margin in the input data space, this paper proposes Contractive Rectifier Networks (CRNs), wherein the hidden-layer transformations are restricted to be contraction mappings. The contractive constraints ensure that the achieved separating margin in the input space is larger than or equal to the separating margin in the output layer. The training of the proposed CRNs is formulated as a linear support vector machine (SVM) in the output layer, combined with two or more contractive hidden layers. Effective algorithms have been proposed to address the optimization challenges arising from contraction constraints. Experimental results on MNIST, CIFAR-10, CIFAR-100 and MIT-67 datasets demonstrate that the proposed contractive rectifier networks consistently outperform their conventional unconstrained rectifier network counterparts.","PeriodicalId":6633,"journal":{"name":"2015 IEEE International Conference on Computer Vision (ICCV)","volume":"2011 1","pages":"2515-2523"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2015.289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

To find the optimal nonlinear separating boundary with maximum margin in the input data space, this paper proposes Contractive Rectifier Networks (CRNs), wherein the hidden-layer transformations are restricted to be contraction mappings. The contractive constraints ensure that the achieved separating margin in the input space is larger than or equal to the separating margin in the output layer. The training of the proposed CRNs is formulated as a linear support vector machine (SVM) in the output layer, combined with two or more contractive hidden layers. Effective algorithms have been proposed to address the optimization challenges arising from contraction constraints. Experimental results on MNIST, CIFAR-10, CIFAR-100 and MIT-67 datasets demonstrate that the proposed contractive rectifier networks consistently outperform their conventional unconstrained rectifier network counterparts.
非线性最大余量分类的收缩整流网络
为了在输入数据空间中寻找具有最大边界的最优非线性分离边界,本文提出了压缩整流网络(CRNs),其中隐藏层变换被限制为收缩映射。收缩约束确保在输入空间中实现的分离边界大于或等于输出层的分离边界。所提出的crn的训练被表述为输出层中的线性支持向量机(SVM),结合两个或多个收缩隐藏层。已经提出了有效的算法来解决由收缩约束引起的优化挑战。在MNIST、CIFAR-10、CIFAR-100和MIT-67数据集上的实验结果表明,所提出的收缩整流网络始终优于传统的无约束整流网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信