{"title":"Picosecond-precision optical two-way time transfer in free space using flexible binary offset carrier modulation","authors":"Honglei Yang, Haifeng Wang, Hang Yi, Xueyun Wang, Hongbo Wang, Shengkang Zhang","doi":"10.1364/osac.384721","DOIUrl":null,"url":null,"abstract":"Free-space optical time transfer that features high precision and flexibility will act a crucial role in near-future ground-to-satellite/inter-satellite clock networks and outdoor timing services. Here we propose a free-space optical flexible-binary-offset-carrier-modulated (FlexBOC-modulated) time transfer method. The utilized FlexBOC modulation could yield a comparative precision, although its occupied bandwidth is tremendously reduced by at least 97.5% compared to optical binary phase modulation. Meanwhile, the adoption of optical techniques eliminates the multi-path effect that is major limit in the current microwave satellite time transfer system. What's more, the time interval measurement avoids a continuous link that may be routinely broken by physical obstructions. For verification, a time transfer experiment with our home-built system between two sites separated by a 30-m free-space path outside the laboratory was conducted. Over a 15 h period, the time deviation is 2.3 ps in a 1-s averaging time, and averages down to 1.0 ps until ~60 s. The fractional frequency instability exhibits 4.0E-12 at a gate time of 1 s, and approaches to 2.6E10-15 at 10000 s.","PeriodicalId":8487,"journal":{"name":"arXiv: Signal Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/osac.384721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Free-space optical time transfer that features high precision and flexibility will act a crucial role in near-future ground-to-satellite/inter-satellite clock networks and outdoor timing services. Here we propose a free-space optical flexible-binary-offset-carrier-modulated (FlexBOC-modulated) time transfer method. The utilized FlexBOC modulation could yield a comparative precision, although its occupied bandwidth is tremendously reduced by at least 97.5% compared to optical binary phase modulation. Meanwhile, the adoption of optical techniques eliminates the multi-path effect that is major limit in the current microwave satellite time transfer system. What's more, the time interval measurement avoids a continuous link that may be routinely broken by physical obstructions. For verification, a time transfer experiment with our home-built system between two sites separated by a 30-m free-space path outside the laboratory was conducted. Over a 15 h period, the time deviation is 2.3 ps in a 1-s averaging time, and averages down to 1.0 ps until ~60 s. The fractional frequency instability exhibits 4.0E-12 at a gate time of 1 s, and approaches to 2.6E10-15 at 10000 s.