Gorenstein-Projective Modules over Morita Rings

IF 0.4 4区 数学 Q4 MATHEMATICS
Dadi Asefa
{"title":"Gorenstein-Projective Modules over Morita Rings","authors":"Dadi Asefa","doi":"10.1142/S1005386721000407","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] be a Morita ring which is an Artin algebra. In this paper we investigate the relations between the Gorenstein-projective modules over a Morita ring [Formula: see text] and the algebras [Formula: see text] and [Formula: see text]. We prove that if [Formula: see text] is a Gorenstein algebra and both [Formula: see text] and [Formula: see text] (resp., both [Formula: see text] and [Formula: see text]) have finite projective dimension, then [Formula: see text] (resp., [Formula: see text]) is a Gorenstein algebra. We also discuss when the CM-freeness and the CM-finiteness of a Morita ring [Formula: see text] is inherited by the algebras [Formula: see text] and [Formula: see text].","PeriodicalId":50958,"journal":{"name":"Algebra Colloquium","volume":"2016 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra Colloquium","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S1005386721000407","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

Let [Formula: see text] be a Morita ring which is an Artin algebra. In this paper we investigate the relations between the Gorenstein-projective modules over a Morita ring [Formula: see text] and the algebras [Formula: see text] and [Formula: see text]. We prove that if [Formula: see text] is a Gorenstein algebra and both [Formula: see text] and [Formula: see text] (resp., both [Formula: see text] and [Formula: see text]) have finite projective dimension, then [Formula: see text] (resp., [Formula: see text]) is a Gorenstein algebra. We also discuss when the CM-freeness and the CM-finiteness of a Morita ring [Formula: see text] is inherited by the algebras [Formula: see text] and [Formula: see text].
Morita环上的投影模
设[公式:见文]是一个森田环,它是一个阿廷代数。本文研究了Morita环上的gorenstein -射影模[公式:见文]与代数[公式:见文]和[公式:见文]之间的关系。我们证明了如果[公式:见文]是一个Gorenstein代数,并且[公式:见文]和[公式:见文]都是(见文)。,[公式:见文]和[公式:见文])都有有限的射影维度,那么[公式:见文](见文)。(公式:见原文)是一个戈伦斯坦代数。我们还讨论了Morita环[公式:见文]的cm -自由性和cm -有限性何时被代数[公式:见文]和[公式:见文]继承。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algebra Colloquium
Algebra Colloquium 数学-数学
CiteScore
0.60
自引率
0.00%
发文量
625
审稿时长
15.6 months
期刊介绍: Algebra Colloquium is an international mathematical journal founded at the beginning of 1994. It is edited by the Academy of Mathematics & Systems Science, Chinese Academy of Sciences, jointly with Suzhou University, and published quarterly in English in every March, June, September and December. Algebra Colloquium carries original research articles of high level in the field of pure and applied algebra. Papers from related areas which have applications to algebra are also considered for publication. This journal aims to reflect the latest developments in algebra and promote international academic exchanges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信