Greedy Heuristics for Judicious Hypergraph Partitioning

Noah Wahl, Lars Gottesbüren
{"title":"Greedy Heuristics for Judicious Hypergraph Partitioning","authors":"Noah Wahl, Lars Gottesbüren","doi":"10.4230/LIPIcs.SEA.2023.17","DOIUrl":null,"url":null,"abstract":"We investigate the efficacy of greedy heuristics for the judicious hypergraph partitioning problem. In contrast to balanced partitioning problems, the goal of judicious hypergraph partitioning is to minimize the maximum load over all blocks of the partition. We devise strategies for initial partitioning and FM-style post-processing. In combination with a multilevel scheme, they beat the previous state-of-the-art solver – based on greedy set covers – in both running time (two to four orders of magnitude) and solution quality (18% to 45%). A major challenge that makes local greedy approaches difficult to use for this problem is the high frequency of zero-gain moves , for which we present and evaluate counteracting mechanisms.","PeriodicalId":9448,"journal":{"name":"Bulletin of the Society of Sea Water Science, Japan","volume":"134 1","pages":"17:1-17:16"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Society of Sea Water Science, Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.SEA.2023.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We investigate the efficacy of greedy heuristics for the judicious hypergraph partitioning problem. In contrast to balanced partitioning problems, the goal of judicious hypergraph partitioning is to minimize the maximum load over all blocks of the partition. We devise strategies for initial partitioning and FM-style post-processing. In combination with a multilevel scheme, they beat the previous state-of-the-art solver – based on greedy set covers – in both running time (two to four orders of magnitude) and solution quality (18% to 45%). A major challenge that makes local greedy approaches difficult to use for this problem is the high frequency of zero-gain moves , for which we present and evaluate counteracting mechanisms.
超图分区的贪婪启发式算法
研究了贪心启发式算法在超图明智划分问题中的有效性。与平衡分区问题相反,明智的超图分区的目标是最小化分区所有块上的最大负载。我们设计了初始分区和fm风格的后处理策略。结合多层方案,它们在运行时间(2到4个数量级)和解决方案质量(18%到45%)上都击败了以前最先进的基于贪婪集覆盖的求解器。使局部贪婪方法难以用于此问题的主要挑战是零增益移动的高频率,为此我们提出并评估了抵消机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信