Solving resource-constrained project scheduling problem using metaheuristic algorithm

M. Munlin
{"title":"Solving resource-constrained project scheduling problem using metaheuristic algorithm","authors":"M. Munlin","doi":"10.1109/ICEEE2.2018.8391359","DOIUrl":null,"url":null,"abstract":"We propose the metaheuristic algorithm to solve the The Resource-Constrained Project Scheduling Problem (RCPSP). The approach method extends the Particle Swarm Optimization (PSO) by regrouping the agent particles within the appropriate radius of the circle. It initializes the group of particles, calculates the fitness function, and finds the best particle in that group. Then, it incorporates the adaptive mutation and forward-backward improvement to hybridize local search algorithm for constructing the feasible project scheduling with the minimal make-span. The efficiency of the proposed method is tested against the well-known benchmarks. The results show that the proposed method gives better optimum rate and standard deviation than some existing procedures.","PeriodicalId":6482,"journal":{"name":"2018 5th International Conference on Electrical and Electronic Engineering (ICEEE)","volume":"73 1","pages":"344-349"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 5th International Conference on Electrical and Electronic Engineering (ICEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEE2.2018.8391359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We propose the metaheuristic algorithm to solve the The Resource-Constrained Project Scheduling Problem (RCPSP). The approach method extends the Particle Swarm Optimization (PSO) by regrouping the agent particles within the appropriate radius of the circle. It initializes the group of particles, calculates the fitness function, and finds the best particle in that group. Then, it incorporates the adaptive mutation and forward-backward improvement to hybridize local search algorithm for constructing the feasible project scheduling with the minimal make-span. The efficiency of the proposed method is tested against the well-known benchmarks. The results show that the proposed method gives better optimum rate and standard deviation than some existing procedures.
利用元启发式算法求解资源受限的项目调度问题
提出了一种求解资源约束型项目调度问题的元启发式算法。该方法对粒子群算法进行了扩展,在适当的圆半径范围内对agent粒子进行重新分组。它初始化粒子组,计算适应度函数,并在该组中找到最佳粒子。在此基础上,结合自适应变异和正向向后改进的混合局部搜索算法,构造具有最小制作跨度的可行工程调度。通过知名的基准测试,验证了该方法的有效性。结果表明,该方法比现有方法具有更好的最优率和标准偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信