{"title":"FPGA-based acceleration of cascaded support vector machines for embedded applications (abstract only)","authors":"C. Kyrkou, C. Bouganis, T. Theocharides","doi":"10.1145/2435264.2435316","DOIUrl":null,"url":null,"abstract":"Support Vector Machines (SVMs) are considered one of the most popular classification algorithms yielding high accuracy rates. However, SVMs often require processing a large number of support vectors, making the classification process computationally demanding, and hence it is challenging to meet real-time processing constraints imposed by many embedded applications. In order to improve SVM classification times the cascade classification scheme has been proposed. However, even in this case real-time performance is still challenging to achieve without exploiting the throughput and processing requirements of each cascade stage. Hence the design of an FPGA-based accelerator for cascaded SVM processing is proposed; in addition to a hardware reduction method in order to reduce the implementation requirements of the cascade SVM leading to significant resource savings. The accelerator was implemented on a Virtex 5 FPGA platform and evaluated using face detection as the target application on 640×480 resolution images. It was compared against FPGA implementations of the same cascade processing architecture but without using the reduction method, and a single parallel SVM classifier. The accelerator is capable an average performance of 70 frames-per-second, achieving a speed-up of 5× over the single parallel SVM classifier. Furthermore, the hardware reduction method results in the utilization of 43% less FPGA LUT resources, with only 0.7% reduction in classification accuracy.","PeriodicalId":87257,"journal":{"name":"FPGA. ACM International Symposium on Field-Programmable Gate Arrays","volume":"72 1","pages":"267"},"PeriodicalIF":0.0000,"publicationDate":"2013-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FPGA. ACM International Symposium on Field-Programmable Gate Arrays","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2435264.2435316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Support Vector Machines (SVMs) are considered one of the most popular classification algorithms yielding high accuracy rates. However, SVMs often require processing a large number of support vectors, making the classification process computationally demanding, and hence it is challenging to meet real-time processing constraints imposed by many embedded applications. In order to improve SVM classification times the cascade classification scheme has been proposed. However, even in this case real-time performance is still challenging to achieve without exploiting the throughput and processing requirements of each cascade stage. Hence the design of an FPGA-based accelerator for cascaded SVM processing is proposed; in addition to a hardware reduction method in order to reduce the implementation requirements of the cascade SVM leading to significant resource savings. The accelerator was implemented on a Virtex 5 FPGA platform and evaluated using face detection as the target application on 640×480 resolution images. It was compared against FPGA implementations of the same cascade processing architecture but without using the reduction method, and a single parallel SVM classifier. The accelerator is capable an average performance of 70 frames-per-second, achieving a speed-up of 5× over the single parallel SVM classifier. Furthermore, the hardware reduction method results in the utilization of 43% less FPGA LUT resources, with only 0.7% reduction in classification accuracy.