Using Deep Learning to Classify Power Consumption Signals of Wireless Devices: An Application to Cybersecurity

Abdurhman Albasir, R. S. R. James, S. Naik, A. Nayak
{"title":"Using Deep Learning to Classify Power Consumption Signals of Wireless Devices: An Application to Cybersecurity","authors":"Abdurhman Albasir, R. S. R. James, S. Naik, A. Nayak","doi":"10.1109/ICASSP.2018.8461304","DOIUrl":null,"url":null,"abstract":"The problem of detecting malware in mobile devices is becoming increasingly important. While most of the mobile devices run on very limited resources, having anti-viruses installed on-board is not very practical, especially in IoT devices. Even if such tools exist, malware could hide or manipulate their fingerprint, making them not easy to detect. Thus, having effective countermeasures for after malware intrusion is paramount. In this work, we utilize deep learning ability to learn multiple levels of representations from raw data to classify power consumption signals obtained from smartphones. The objective is to build a framework that can intelligently tell if the smartphone has a malware or not by only monitoring its power consumption. Validation tests confirm that the proposed framework show that information contained in the measured power consumption of smartphones can in principle be used to identify malware existence and further can tell how active malware is with very high accuracy.","PeriodicalId":6638,"journal":{"name":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"134 1","pages":"2032-2036"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2018.8461304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The problem of detecting malware in mobile devices is becoming increasingly important. While most of the mobile devices run on very limited resources, having anti-viruses installed on-board is not very practical, especially in IoT devices. Even if such tools exist, malware could hide or manipulate their fingerprint, making them not easy to detect. Thus, having effective countermeasures for after malware intrusion is paramount. In this work, we utilize deep learning ability to learn multiple levels of representations from raw data to classify power consumption signals obtained from smartphones. The objective is to build a framework that can intelligently tell if the smartphone has a malware or not by only monitoring its power consumption. Validation tests confirm that the proposed framework show that information contained in the measured power consumption of smartphones can in principle be used to identify malware existence and further can tell how active malware is with very high accuracy.
利用深度学习对无线设备功耗信号进行分类:在网络安全中的应用
在移动设备中检测恶意软件的问题变得越来越重要。虽然大多数移动设备运行在非常有限的资源上,但在板上安装防病毒软件并不是很实用,特别是在物联网设备中。即使存在这样的工具,恶意软件也可以隐藏或操纵他们的指纹,使他们不容易被发现。因此,对恶意软件入侵后的有效对策至关重要。在这项工作中,我们利用深度学习能力从原始数据中学习多层表示,以分类从智能手机获得的功耗信号。目标是建立一个框架,可以智能地判断智能手机是否有恶意软件,仅通过监测其功耗。验证测试证实,所提出的框架表明,智能手机功耗测量中包含的信息原则上可以用于识别恶意软件的存在,并且可以以非常高的准确性告诉恶意软件的活跃程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信