Identities relating six members of the Fibonacci family of sequences

IF 1 Q1 MATHEMATICS
R. Frontczak, T. Goy, M. Shattuck
{"title":"Identities relating six members of the Fibonacci family of sequences","authors":"R. Frontczak, T. Goy, M. Shattuck","doi":"10.15330/cmp.14.1.6-19","DOIUrl":null,"url":null,"abstract":"In this paper, we prove several identities each relating a sum of products of three terms coming from different members of the Fibonacci family of sequences with a comparable sum whose terms come from three other sequences. These identities are obtained as special cases of formulas relating two linear combinations of products of three generalized Fibonacci or Lucas sequences. The latter formulas are in turn obtained from a more general generating function result for the product of three terms coming from second-order linearly recurrent sequences with arbitrary initial values. We employ algebraic arguments to establish our results, making use of the Binet-like formulas of the underlying sequences. Among the sequences for which the aforementioned identities are found include the Fibonacci, Pell, Jacobsthal and Mersenne numbers, along with their associated Lucas companion sequences.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.14.1.6-19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we prove several identities each relating a sum of products of three terms coming from different members of the Fibonacci family of sequences with a comparable sum whose terms come from three other sequences. These identities are obtained as special cases of formulas relating two linear combinations of products of three generalized Fibonacci or Lucas sequences. The latter formulas are in turn obtained from a more general generating function result for the product of three terms coming from second-order linearly recurrent sequences with arbitrary initial values. We employ algebraic arguments to establish our results, making use of the Binet-like formulas of the underlying sequences. Among the sequences for which the aforementioned identities are found include the Fibonacci, Pell, Jacobsthal and Mersenne numbers, along with their associated Lucas companion sequences.
关于斐波那契数列族的六个成员的恒等式
在本文中,我们证明了几个恒等式,每个恒等式都是关于来自斐波那契数列的不同成员的三个项的乘积和与一个来自其他三个序列的项的可比和。这些恒等式是作为三个广义斐波那契或卢卡斯序列乘积的两个线性组合的公式的特殊情况而得到的。后一种公式反过来又从一个更一般的生成函数结果中得到,该结果来自具有任意初值的二阶线性循环序列的三项乘积。我们使用代数参数来建立我们的结果,利用底层序列的类比奈公式。上述恒等式被发现的数列包括斐波那契数列、Pell数列、jacobthal数列和Mersenne数列,以及它们相关的Lucas伴列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信