{"title":"Solution of the heawood map-coloring problem—Case 4","authors":"C.M. Terry, L.R. Welch, J.W.T. Youngs","doi":"10.1016/S0021-9800(70)80074-6","DOIUrl":null,"url":null,"abstract":"<div><p>This paper gives a proof of the fact that the chromatic number of an orientable surface of genus <em>p</em> is equal to the integral part of <span><math><mrow><mrow><mrow><mrow><mo>(</mo><mrow><mn>7</mn><mo>+</mo><msqrt><mrow><mn>1</mn><mo>+</mo><mn>48</mn><mi>p</mi></mrow></msqrt></mrow><mo>)</mo></mrow></mrow><mo>/</mo><mn>2</mn></mrow></mrow></math></span> whenever the latter is congruent to 4 modulo 12.</p></div>","PeriodicalId":100765,"journal":{"name":"Journal of Combinatorial Theory","volume":"8 2","pages":"Pages 170-174"},"PeriodicalIF":0.0000,"publicationDate":"1970-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0021-9800(70)80074-6","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021980070800746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
This paper gives a proof of the fact that the chromatic number of an orientable surface of genus p is equal to the integral part of whenever the latter is congruent to 4 modulo 12.