Pendekatan Deep Learning Untuk Prediksi Durasi Perjalanan

Teknika Pub Date : 2022-06-22 DOI:10.34148/teknika.v11i2.460
Nur Ghaniaviyanto Ramadhan, Yohani Setiya Rafika Nur, Faisal Dharma Adhinata
{"title":"Pendekatan Deep Learning Untuk Prediksi Durasi Perjalanan","authors":"Nur Ghaniaviyanto Ramadhan, Yohani Setiya Rafika Nur, Faisal Dharma Adhinata","doi":"10.34148/teknika.v11i2.460","DOIUrl":null,"url":null,"abstract":"Setiap orang dalam kehidupan memiliki kecenderungan untuk berpindah dari satu tempat ke tempat lainnya. Perpindahan tersebut dapat dilakukan dengan menggunakan berbagai macam cara seperti menggunakan transportasi pribadi atau umum (bus, taksi, pesawat, dan kereta api), Pada perkembangan teknologi saat ini mode transportasi sudah semakin canggih. Akan tetapi masih ada mode transportasi yang belum modern misalnya seperti taksi, dimana salah satunya tidak dapat memprediksi lama waktu perjalanan. Meskipun sudah ada taksi yang berbasis online seperti Uber, akan tetapi masih banyak taksi yang belum berbasis online sehingga tidak bisa dilakukan estimasi waktu dan jarak. Permasalahan di atas dapat diselesaikan dengan cara melakukan pendekatan berbasis pembelajaran mesin. Salah satu keuntungan yang didapatkan jika kita dapat mengetahui lama waktu estimasi perjalanan yaitu dapat mengatur waktu perjalanan sesuai dengan rutinitas yang sedang dikerjakan ataupun juga dapat menghemat biaya yang dikeluarkan dengan mengetahui jarak yang akan dijalankan. Pada penelitian ini bertujuan untuk memprediksi durasi perjalanan pada dataset New York taxi trip duration menggunakan pendekatan deep learning yaitu Long Short Term Memory Reccurent Neural Network (LSTM-RNN). Eksperimen dilakukan dengan melakukan tuning parameter terkait seperti epoch, nilai dropout, dan neurons. Pengukuran hasil menggunakan nilai Root Mean Square Error (RMSE) dan nilai loss. Hasil yang didapatkan menggunakan model LSTM-RNN sebesar 0,0012 untuk nilai loss dan RMSE 0,4.","PeriodicalId":52620,"journal":{"name":"Teknika","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Teknika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34148/teknika.v11i2.460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Setiap orang dalam kehidupan memiliki kecenderungan untuk berpindah dari satu tempat ke tempat lainnya. Perpindahan tersebut dapat dilakukan dengan menggunakan berbagai macam cara seperti menggunakan transportasi pribadi atau umum (bus, taksi, pesawat, dan kereta api), Pada perkembangan teknologi saat ini mode transportasi sudah semakin canggih. Akan tetapi masih ada mode transportasi yang belum modern misalnya seperti taksi, dimana salah satunya tidak dapat memprediksi lama waktu perjalanan. Meskipun sudah ada taksi yang berbasis online seperti Uber, akan tetapi masih banyak taksi yang belum berbasis online sehingga tidak bisa dilakukan estimasi waktu dan jarak. Permasalahan di atas dapat diselesaikan dengan cara melakukan pendekatan berbasis pembelajaran mesin. Salah satu keuntungan yang didapatkan jika kita dapat mengetahui lama waktu estimasi perjalanan yaitu dapat mengatur waktu perjalanan sesuai dengan rutinitas yang sedang dikerjakan ataupun juga dapat menghemat biaya yang dikeluarkan dengan mengetahui jarak yang akan dijalankan. Pada penelitian ini bertujuan untuk memprediksi durasi perjalanan pada dataset New York taxi trip duration menggunakan pendekatan deep learning yaitu Long Short Term Memory Reccurent Neural Network (LSTM-RNN). Eksperimen dilakukan dengan melakukan tuning parameter terkait seperti epoch, nilai dropout, dan neurons. Pengukuran hasil menggunakan nilai Root Mean Square Error (RMSE) dan nilai loss. Hasil yang didapatkan menggunakan model LSTM-RNN sebesar 0,0012 untuk nilai loss dan RMSE 0,4.
深度学习预测飞行持续时间的方法
生活中的每一个人都有从一个地方到另一个地方的倾向。这种移民可以通过各种方式来实现,比如乘坐公共或私人交通工具(公共汽车、出租车、飞机和火车),在今天的技术发展中,交通模式变得越来越复杂。然而,仍然有不现代的交通方式,比如出租车,其中一种不能预测长期的旅行时间。虽然已经有像优步这样的在线出租车,但许多出租车还没有在线出租车,因此无法估计时间和距离。上述问题可以通过使用一种基于机器学习的方法来解决。如果我们能知道旅行的时间长短,那就是能够按照正在进行的日常工作安排时间,或者通过知道旅行的距离来节省开支。本研究旨在预测纽约出租车旅行duration的旅行持续时间,使用一种名为Long Term Memory Reccurent Neural Network (LSTM-RNN)的深层学习方法。实验是通过对epoch、dropout值和neurons等相关参数进行调整进行的。使用Root均值误差(RMSE)和loss值衡量结果。结果是使用LSTM-RNN模型损失值为0.0012,RMSE 0.4。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
22
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信