From low to high-and lower-optimal regularity of the SMGTJ equation with Dirichlet and Neumann boundary control, and with point control, via explicit representation formulae
{"title":"From low to high-and lower-optimal regularity of the SMGTJ equation with Dirichlet and Neumann boundary control, and with point control, via explicit representation formulae","authors":"R. Triggiani, X. Wan","doi":"10.3934/eect.2022007","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>We consider the linear third order (in time) PDE known as the SMGTJ-equation, defined on a bounded domain, under the action of either Dirichlet or Neumann boundary control <inline-formula><tex-math id=\"M1\">\\begin{document}$ g $\\end{document}</tex-math></inline-formula>. Optimal interior and boundary regularity results were given in [<xref ref-type=\"bibr\" rid=\"b1\">1</xref>], after [<xref ref-type=\"bibr\" rid=\"b41\">41</xref>], when <inline-formula><tex-math id=\"M2\">\\begin{document}$ g \\in L^2(0, T;L^2(\\Gamma)) \\equiv L^2(\\Sigma) $\\end{document}</tex-math></inline-formula>, which, moreover, in the canonical case <inline-formula><tex-math id=\"M3\">\\begin{document}$ \\gamma = 0 $\\end{document}</tex-math></inline-formula>, were expressed by the well-known explicit representation formulae of the wave equation in terms of cosine/sine operators [<xref ref-type=\"bibr\" rid=\"b19\">19</xref>], [<xref ref-type=\"bibr\" rid=\"b17\">17</xref>], [<xref ref-type=\"bibr\" rid=\"b24\">24</xref>,Vol Ⅱ]. The interior or boundary regularity theory is however the same, whether <inline-formula><tex-math id=\"M4\">\\begin{document}$ \\gamma = 0 $\\end{document}</tex-math></inline-formula> or <inline-formula><tex-math id=\"M5\">\\begin{document}$ 0 \\neq \\gamma \\in L^{\\infty}(\\Omega) $\\end{document}</tex-math></inline-formula>, since <inline-formula><tex-math id=\"M6\">\\begin{document}$ \\gamma \\neq 0 $\\end{document}</tex-math></inline-formula> is responsible only for lower order terms. Here we exploit such cosine operator based-explicit representation formulae to provide optimal interior and boundary regularity results with <inline-formula><tex-math id=\"M7\">\\begin{document}$ g $\\end{document}</tex-math></inline-formula> \"smoother\" than <inline-formula><tex-math id=\"M8\">\\begin{document}$ L^2(\\Sigma) $\\end{document}</tex-math></inline-formula>, qualitatively by one unit, two units, etc. in the Dirichlet boundary case. To this end, we invoke the corresponding results for wave equations, as in [<xref ref-type=\"bibr\" rid=\"b17\">17</xref>]. Similarly for the Neumann boundary case, by invoking the corresponding results for the wave equation as in [<xref ref-type=\"bibr\" rid=\"b22\">22</xref>], [<xref ref-type=\"bibr\" rid=\"b23\">23</xref>], [<xref ref-type=\"bibr\" rid=\"b37\">37</xref>] for control smoother than <inline-formula><tex-math id=\"M9\">\\begin{document}$ L^2(0, T;L^2(\\Gamma)) $\\end{document}</tex-math></inline-formula>, and [<xref ref-type=\"bibr\" rid=\"b44\">44</xref>] for control less regular in space than <inline-formula><tex-math id=\"M10\">\\begin{document}$ L^2(\\Gamma) $\\end{document}</tex-math></inline-formula>. In addition, we provide optimal interior and boundary regularity results when the SMGTJ equation is subject to interior point control, by invoking the corresponding wave equations results [<xref ref-type=\"bibr\" rid=\"b42\">42</xref>], [<xref ref-type=\"bibr\" rid=\"b24\">24</xref>,Section 9.8.2].</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/eect.2022007","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
We consider the linear third order (in time) PDE known as the SMGTJ-equation, defined on a bounded domain, under the action of either Dirichlet or Neumann boundary control \begin{document}$ g $\end{document}. Optimal interior and boundary regularity results were given in [1], after [41], when \begin{document}$ g \in L^2(0, T;L^2(\Gamma)) \equiv L^2(\Sigma) $\end{document}, which, moreover, in the canonical case \begin{document}$ \gamma = 0 $\end{document}, were expressed by the well-known explicit representation formulae of the wave equation in terms of cosine/sine operators [19], [17], [24,Vol Ⅱ]. The interior or boundary regularity theory is however the same, whether \begin{document}$ \gamma = 0 $\end{document} or \begin{document}$ 0 \neq \gamma \in L^{\infty}(\Omega) $\end{document}, since \begin{document}$ \gamma \neq 0 $\end{document} is responsible only for lower order terms. Here we exploit such cosine operator based-explicit representation formulae to provide optimal interior and boundary regularity results with \begin{document}$ g $\end{document} "smoother" than \begin{document}$ L^2(\Sigma) $\end{document}, qualitatively by one unit, two units, etc. in the Dirichlet boundary case. To this end, we invoke the corresponding results for wave equations, as in [17]. Similarly for the Neumann boundary case, by invoking the corresponding results for the wave equation as in [22], [23], [37] for control smoother than \begin{document}$ L^2(0, T;L^2(\Gamma)) $\end{document}, and [44] for control less regular in space than \begin{document}$ L^2(\Gamma) $\end{document}. In addition, we provide optimal interior and boundary regularity results when the SMGTJ equation is subject to interior point control, by invoking the corresponding wave equations results [42], [24,Section 9.8.2].
We consider the linear third order (in time) PDE known as the SMGTJ-equation, defined on a bounded domain, under the action of either Dirichlet or Neumann boundary control \begin{document}$ g $\end{document}. Optimal interior and boundary regularity results were given in [1], after [41], when \begin{document}$ g \in L^2(0, T;L^2(\Gamma)) \equiv L^2(\Sigma) $\end{document}, which, moreover, in the canonical case \begin{document}$ \gamma = 0 $\end{document}, were expressed by the well-known explicit representation formulae of the wave equation in terms of cosine/sine operators [19], [17], [24,Vol Ⅱ]. The interior or boundary regularity theory is however the same, whether \begin{document}$ \gamma = 0 $\end{document} or \begin{document}$ 0 \neq \gamma \in L^{\infty}(\Omega) $\end{document}, since \begin{document}$ \gamma \neq 0 $\end{document} is responsible only for lower order terms. Here we exploit such cosine operator based-explicit representation formulae to provide optimal interior and boundary regularity results with \begin{document}$ g $\end{document} "smoother" than \begin{document}$ L^2(\Sigma) $\end{document}, qualitatively by one unit, two units, etc. in the Dirichlet boundary case. To this end, we invoke the corresponding results for wave equations, as in [17]. Similarly for the Neumann boundary case, by invoking the corresponding results for the wave equation as in [22], [23], [37] for control smoother than \begin{document}$ L^2(0, T;L^2(\Gamma)) $\end{document}, and [44] for control less regular in space than \begin{document}$ L^2(\Gamma) $\end{document}. In addition, we provide optimal interior and boundary regularity results when the SMGTJ equation is subject to interior point control, by invoking the corresponding wave equations results [42], [24,Section 9.8.2].
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.