Residually Finite Lattices in PU(2,1)˜ and Fundamental Groups of Smooth Projective Surfaces

IF 0.8 3区 数学 Q2 MATHEMATICS
Matthew Stover, D. Toledo
{"title":"Residually Finite Lattices in PU(2,1)˜ and Fundamental Groups of Smooth Projective Surfaces","authors":"Matthew Stover, D. Toledo","doi":"10.1307/mmj/20217215","DOIUrl":null,"url":null,"abstract":"This paper studies residual finiteness of lattices in the universal cover of PU(2 , 1) and applications to the existence of smooth projective varieties with fundamental group a cocompact lattice in PU(2 , 1) or a finite covering of it. First, we prove that certain lattices in the universal cover of PU(2 , 1) are residually finite. To our knowledge, these are the first such examples. We then use residually finite central extensions of torsion-free lattices in PU(2 , 1) to construct smooth projective surfaces that are not birationally equivalent to a smooth compact ball quotient but whose fundamental group is a torsion-free cocompact lattice in PU(2 , 1).","PeriodicalId":49820,"journal":{"name":"Michigan Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Michigan Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1307/mmj/20217215","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 11

Abstract

This paper studies residual finiteness of lattices in the universal cover of PU(2 , 1) and applications to the existence of smooth projective varieties with fundamental group a cocompact lattice in PU(2 , 1) or a finite covering of it. First, we prove that certain lattices in the universal cover of PU(2 , 1) are residually finite. To our knowledge, these are the first such examples. We then use residually finite central extensions of torsion-free lattices in PU(2 , 1) to construct smooth projective surfaces that are not birationally equivalent to a smooth compact ball quotient but whose fundamental group is a torsion-free cocompact lattice in PU(2 , 1).
PU(2,1) ~的剩余有限格和光滑投影曲面的基本群
本文研究了PU(2,1)的普适覆盖格的剩余有限性,并应用于PU(2,1)中基群为紧格或其有限覆盖的光滑射影变的存在性。首先,我们证明了PU(2,1)的泛盖中的某些格是剩余有限的。据我们所知,这是第一个这样的例子。然后,我们利用PU(2,1)中无扭格的剩余有限中心扩展构造光滑射影曲面,该曲面不等价于光滑紧球商,但其基群是PU(2,1)中的无扭紧格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
11.10%
发文量
50
审稿时长
>12 weeks
期刊介绍: The Michigan Mathematical Journal is available electronically through the Project Euclid web site. The electronic version is available free to all paid subscribers. The Journal must receive from institutional subscribers a list of Internet Protocol Addresses in order for members of their institutions to have access to the online version of the Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信