Some stability problem for the Navier–Stokes equations in the periodic case

Q4 Mathematics
W. Zaja̧czkowski
{"title":"Some stability problem for the Navier–Stokes equations in the periodic case","authors":"W. Zaja̧czkowski","doi":"10.4064/AM2309-8-2018","DOIUrl":null,"url":null,"abstract":"The Navier-Stokes motions in a box with periodic boundary conditions are considered. First the existence of global regular two-dimensional solutions is proved. The solutions are such that continuous with respect to time norms are controlled by the same constant for all $t\\in\\mathbb{R}_+$. Assuming that the initial velocity and the external force are sufficiently close to the initial velocity and the external force of the two-dimensional solutions we prove existence of global three-dimensional regular solutions which remain close to the two-dimensional solutions for all time. In this way we mean stability of two-dimensional solutions.","PeriodicalId":52313,"journal":{"name":"Applicationes Mathematicae","volume":"164 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applicationes Mathematicae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4064/AM2309-8-2018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

Abstract

The Navier-Stokes motions in a box with periodic boundary conditions are considered. First the existence of global regular two-dimensional solutions is proved. The solutions are such that continuous with respect to time norms are controlled by the same constant for all $t\in\mathbb{R}_+$. Assuming that the initial velocity and the external force are sufficiently close to the initial velocity and the external force of the two-dimensional solutions we prove existence of global three-dimensional regular solutions which remain close to the two-dimensional solutions for all time. In this way we mean stability of two-dimensional solutions.
周期情况下Navier-Stokes方程的稳定性问题
考虑了具有周期边界条件的盒子中的Navier-Stokes运动。首先证明了全局正则二维解的存在性。这些解是这样的:对于\mathbb{R}_+$中的所有$t\,对于时间规范的连续都由相同的常数控制。假设初始速度和外力与二维解的初始速度和外力足够接近,我们证明了全局三维正则解的存在性,它始终与二维解保持接近。这样,我们指的是二维解的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applicationes Mathematicae
Applicationes Mathematicae Mathematics-Applied Mathematics
CiteScore
0.30
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信