An Empirical Study of Speech Processing in the Brain by Analyzing the Temporal Syllable Structure in Speech-input Induced EEG

Rini A. Sharon, Shrikanth S. Narayanan, M. Sur, H. Murthy
{"title":"An Empirical Study of Speech Processing in the Brain by Analyzing the Temporal Syllable Structure in Speech-input Induced EEG","authors":"Rini A. Sharon, Shrikanth S. Narayanan, M. Sur, H. Murthy","doi":"10.1109/ICASSP.2019.8683572","DOIUrl":null,"url":null,"abstract":"Clinical applicability of electroencephalography (EEG) is well established, however the use of EEG as a choice for constructing brain computer interfaces to develop communication platforms is relatively recent. To provide more natural means of communication, there is an increasing focus on bringing together speech and EEG signal processing. Quantifying the way our brain processes speech is one way of approaching the problem of speech recognition using brain waves. This paper analyses the feasibility of recognizing syllable level units by studying the temporal structure of speech reflected in the EEG signals. The slowly varying component of the delta band EEG(0.3-3Hz) is present in all other EEG frequency bands. Analysis shows that removing the delta trend in EEG signals results in signals that reveals syllable like structure. Using a 25 syllable framework, classification of EEG data obtained from 13 subjects yields promising results, underscoring the potential of revealing speech related temporal structure in EEG.","PeriodicalId":13203,"journal":{"name":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"33 1","pages":"4090-4094"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2019.8683572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Clinical applicability of electroencephalography (EEG) is well established, however the use of EEG as a choice for constructing brain computer interfaces to develop communication platforms is relatively recent. To provide more natural means of communication, there is an increasing focus on bringing together speech and EEG signal processing. Quantifying the way our brain processes speech is one way of approaching the problem of speech recognition using brain waves. This paper analyses the feasibility of recognizing syllable level units by studying the temporal structure of speech reflected in the EEG signals. The slowly varying component of the delta band EEG(0.3-3Hz) is present in all other EEG frequency bands. Analysis shows that removing the delta trend in EEG signals results in signals that reveals syllable like structure. Using a 25 syllable framework, classification of EEG data obtained from 13 subjects yields promising results, underscoring the potential of revealing speech related temporal structure in EEG.
通过分析语音输入诱发脑电图的时态音节结构对大脑语音处理的实证研究
脑电图(EEG)的临床应用是公认的,但将EEG作为构建脑机接口开发通信平台的选择相对较晚。为了提供更自然的交流方式,人们越来越关注将语音和脑电图信号处理结合起来。量化我们的大脑处理语音的方式是利用脑电波解决语音识别问题的一种方法。本文通过研究脑电信号中反映的语音时间结构,分析了识别音节水平单位的可行性。δ波段脑电图(0.3-3Hz)的缓慢变化成分存在于所有其他脑电图频段。分析表明,去除脑电信号中的δ趋势后,得到的信号显示出类似音节的结构。采用25音节框架对13名受试者的脑电数据进行分类,结果令人鼓舞,强调了在脑电中揭示言语相关时间结构的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信