MULTI-LAYER CLASSIFIER FOR MINIMIZING FALSE INTRUSION

Shaker El-Sappagh, El-Sappagh Mohammed, Tarek Ahmed AlSheshtawy
{"title":"MULTI-LAYER CLASSIFIER FOR MINIMIZING FALSE INTRUSION","authors":"Shaker El-Sappagh, El-Sappagh Mohammed, Tarek Ahmed AlSheshtawy","doi":"10.5121/IJNSA.2019.11304","DOIUrl":null,"url":null,"abstract":"Intrusion detection is one of the standard stages to protect computers in network security framework from several attacks. False alarms problem is critical in intrusion detection, which motivates many researchers to discover methods to minify false alarms. This paper proposes a procedure for classifying the type of intrusion according to multi-operations and multi-layer classifier for handling false alarms in intrusion detection. The proposed system is tested using on KDDcup99 benchmark. The performance showed that results obtained from three consequent classifiers are better than a single classifier. The accuracy reached 98% based on 25 features instead of using all features of KDDCup99 dataset.","PeriodicalId":93303,"journal":{"name":"International journal of network security & its applications","volume":"72 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of network security & its applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/IJNSA.2019.11304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Intrusion detection is one of the standard stages to protect computers in network security framework from several attacks. False alarms problem is critical in intrusion detection, which motivates many researchers to discover methods to minify false alarms. This paper proposes a procedure for classifying the type of intrusion according to multi-operations and multi-layer classifier for handling false alarms in intrusion detection. The proposed system is tested using on KDDcup99 benchmark. The performance showed that results obtained from three consequent classifiers are better than a single classifier. The accuracy reached 98% based on 25 features instead of using all features of KDDCup99 dataset.
最小化虚假入侵的多层分类器
入侵检测是保护网络安全框架中的计算机免受各种攻击的标准步骤之一。虚警问题是入侵检测中的一个关键问题,它激发了许多研究者寻找最小化虚警的方法。本文提出了一种基于多操作的入侵类型分类方法和多层分类器处理入侵检测中的虚警。在KDDcup99基准测试上对系统进行了测试。结果表明,三个结果分类器的分类效果优于单个分类器。与使用KDDCup99数据集的所有特征相比,基于25个特征的准确率达到98%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信