{"title":"Backtesting Global Growth-at-Risk","authors":"C. Brownlees, André B.M. Souza","doi":"10.2139/ssrn.3461214","DOIUrl":null,"url":null,"abstract":"Abstract We conduct an out-of-sample backtesting exercise of Growth-at-Risk (GaR) predictions for 24 OECD countries. We consider forecasts constructed from quantile regression and GARCH models. The quantile regression forecasts are based on a set of recently proposed measures of downside risks to GDP, including the national financial conditions index. The backtesting results show that quantile regression and GARCH forecasts have a similar performance. If anything, our evidence suggests that standard volatility models such as the GARCH(1,1) are more accurate.","PeriodicalId":11495,"journal":{"name":"Econometric Modeling: Capital Markets - Forecasting eJournal","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Modeling: Capital Markets - Forecasting eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3461214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47
Abstract
Abstract We conduct an out-of-sample backtesting exercise of Growth-at-Risk (GaR) predictions for 24 OECD countries. We consider forecasts constructed from quantile regression and GARCH models. The quantile regression forecasts are based on a set of recently proposed measures of downside risks to GDP, including the national financial conditions index. The backtesting results show that quantile regression and GARCH forecasts have a similar performance. If anything, our evidence suggests that standard volatility models such as the GARCH(1,1) are more accurate.