Intelligent adaptive fuzzy control

Z. Dideková, S. Kajan, A. Kozáková, S. Kozák
{"title":"Intelligent adaptive fuzzy control","authors":"Z. Dideková, S. Kajan, A. Kozáková, S. Kozák","doi":"10.1109/CYBERI.2018.8337549","DOIUrl":null,"url":null,"abstract":"The paper deals with the development of a new adaptive fuzzy control method and algorithm for nonlinear dynamic systems based on the hybrid approach using fuzzy logic and genetic techniques. The new hybrid control methodology based on adaptive switching uses the principle of control parameters adaptation for all operating points of a highly nonlinear process. The control algorithm is realized by a fuzzy controller with parameter optimization for different operating points using a genetic algorithm. Proposed theoretical results are verified on a case study dealing with control design for a nonlinear model of continuously stirred tank reactor. Obtained practical results confirm the high performance and possibility of implementation of this methodology for a broad real plants in industry.","PeriodicalId":6534,"journal":{"name":"2018 Cybernetics & Informatics (K&I)","volume":"74 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Cybernetics & Informatics (K&I)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CYBERI.2018.8337549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The paper deals with the development of a new adaptive fuzzy control method and algorithm for nonlinear dynamic systems based on the hybrid approach using fuzzy logic and genetic techniques. The new hybrid control methodology based on adaptive switching uses the principle of control parameters adaptation for all operating points of a highly nonlinear process. The control algorithm is realized by a fuzzy controller with parameter optimization for different operating points using a genetic algorithm. Proposed theoretical results are verified on a case study dealing with control design for a nonlinear model of continuously stirred tank reactor. Obtained practical results confirm the high performance and possibility of implementation of this methodology for a broad real plants in industry.
智能自适应模糊控制
基于模糊逻辑和遗传技术的混合方法,提出了一种新的非线性动态系统自适应模糊控制方法和算法。基于自适应开关的混合控制方法采用了对高度非线性过程的所有工作点进行控制参数自适应的原理。控制算法由模糊控制器实现,并采用遗传算法对不同工作点进行参数优化。通过对连续搅拌槽式反应器非线性模型控制设计的实例研究,验证了上述理论结果。得到的实际结果证实了该方法在工业上广泛应用于实际工厂的高性能和实施的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信