Mahdi Mahmoudi, Morteza Roostaei, Vahidoddin Fattahpour, Colby Sutton, B. Fermaniuk, Da Zhu, Hee-Ju Jung, Jiankuan Li, C. Sun, L. Gong, S. Shuang, Xiaoyong Qiu, Hongbo Zeng, Jingli Luo
{"title":"Standalone Sand Control Failure: Review of Slotted Liner, Wire Wrap Screen, and Premium Mesh Screen Failure Mechanism","authors":"Mahdi Mahmoudi, Morteza Roostaei, Vahidoddin Fattahpour, Colby Sutton, B. Fermaniuk, Da Zhu, Hee-Ju Jung, Jiankuan Li, C. Sun, L. Gong, S. Shuang, Xiaoyong Qiu, Hongbo Zeng, Jingli Luo","doi":"10.2118/191553-MS","DOIUrl":null,"url":null,"abstract":"\n Standalone screen has been widely used as sand control solution in oil industries for over a century. Screen plugging and impairments by formation fines, scaling and corrosion cost oil and gas industry significant amount of resources. This study presents a detailed study on the corrosion and plugging of slotted liner, wire wrap screen and mesh screen samples extracted from the field to better understand some of the mechanisms for these poor field performances.\n Three types of standalone screen were received from operating wells to study the failure mechanism of the screen and provide recommendations for recompletion. A thorough visual inspection of all screens was performed and documented in this paper. From the results of the visual inspection a certain section of each screen was cut for further detailed microscopic study to better understand the scaling and plugging mechanism, as well as microscopic geometry of the plugged and corroded zone.\n The results highlighted the importance of the corrosion in the base pipe on the observed performances. All the studies pointed toward the flow dependence corrosion behavior, and the role of the water cut on the corrosion rate. The wire wrap screens have been in service for less than a year, yet the extensive corrosion led to creation of several holes in the pipe. The study showed the corrosion initiated from inside the pipe. Similarly, the corrosion of the slotted liner samples showed a strong flow dependent corrosion rate, where the corrosion rate on the slot/formation interface was slightly higher. The mesh screen showed very high plugging percentage by formation fines, where a thick film of clay and fine sand covered the space between the mesh and the base pipe. The results indicated that an inappropriate design of the mesh and pore could cause significant plugging.\n This paper provides several field examples of the corrosion and plugging of the standalone screens. The results could help engineer to better understand the risk of corrosion and plugging on the standalone screen design. This paper provides some general guidelines for assessing the scaling and corrosion potential at field condition based on the results of the screens studied in the paper.","PeriodicalId":11015,"journal":{"name":"Day 1 Mon, September 24, 2018","volume":"72 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Mon, September 24, 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/191553-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Standalone screen has been widely used as sand control solution in oil industries for over a century. Screen plugging and impairments by formation fines, scaling and corrosion cost oil and gas industry significant amount of resources. This study presents a detailed study on the corrosion and plugging of slotted liner, wire wrap screen and mesh screen samples extracted from the field to better understand some of the mechanisms for these poor field performances.
Three types of standalone screen were received from operating wells to study the failure mechanism of the screen and provide recommendations for recompletion. A thorough visual inspection of all screens was performed and documented in this paper. From the results of the visual inspection a certain section of each screen was cut for further detailed microscopic study to better understand the scaling and plugging mechanism, as well as microscopic geometry of the plugged and corroded zone.
The results highlighted the importance of the corrosion in the base pipe on the observed performances. All the studies pointed toward the flow dependence corrosion behavior, and the role of the water cut on the corrosion rate. The wire wrap screens have been in service for less than a year, yet the extensive corrosion led to creation of several holes in the pipe. The study showed the corrosion initiated from inside the pipe. Similarly, the corrosion of the slotted liner samples showed a strong flow dependent corrosion rate, where the corrosion rate on the slot/formation interface was slightly higher. The mesh screen showed very high plugging percentage by formation fines, where a thick film of clay and fine sand covered the space between the mesh and the base pipe. The results indicated that an inappropriate design of the mesh and pore could cause significant plugging.
This paper provides several field examples of the corrosion and plugging of the standalone screens. The results could help engineer to better understand the risk of corrosion and plugging on the standalone screen design. This paper provides some general guidelines for assessing the scaling and corrosion potential at field condition based on the results of the screens studied in the paper.