Quasi-Equivalence of Width and Depth of Neural Networks

Fenglei Fan, Rongjie Lai, Ge Wang
{"title":"Quasi-Equivalence of Width and Depth of Neural Networks","authors":"Fenglei Fan, Rongjie Lai, Ge Wang","doi":"10.21203/rs.3.rs-92324/v1","DOIUrl":null,"url":null,"abstract":"\n While classic studies proved that wide networks allow universal approximation, recent research and successes\nof deep learning demonstrate the power of the network depth. Based on a symmetric consideration,\nwe investigate if the design of artificial neural networks should have a directional preference, and what the\nmechanism of interaction is between the width and depth of a network. We address this fundamental question\nby establishing a quasi-equivalence between the width and depth of ReLU networks. Specifically, we formulate a\ntransformation from an arbitrary ReLU network to a wide network and a deep network for either regression\nor classification so that an essentially same capability of the original network can be implemented. That is, a\ndeep regression/classification ReLU network has a wide equivalent, and vice versa, subject to an arbitrarily small\nerror. Interestingly, the quasi-equivalence between wide and deep classification ReLU networks is a data-driven\nversion of the DeMorgan law.","PeriodicalId":8468,"journal":{"name":"arXiv: Learning","volume":"137 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-92324/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

While classic studies proved that wide networks allow universal approximation, recent research and successes of deep learning demonstrate the power of the network depth. Based on a symmetric consideration, we investigate if the design of artificial neural networks should have a directional preference, and what the mechanism of interaction is between the width and depth of a network. We address this fundamental question by establishing a quasi-equivalence between the width and depth of ReLU networks. Specifically, we formulate a transformation from an arbitrary ReLU network to a wide network and a deep network for either regression or classification so that an essentially same capability of the original network can be implemented. That is, a deep regression/classification ReLU network has a wide equivalent, and vice versa, subject to an arbitrarily small error. Interestingly, the quasi-equivalence between wide and deep classification ReLU networks is a data-driven version of the DeMorgan law.
神经网络宽度和深度的拟等价
虽然经典研究证明了宽网络允许通用近似,但最近的研究和深度学习的成功证明了网络深度的力量。基于对称考虑,我们研究了人工神经网络的设计是否应该具有方向偏好,以及网络宽度和深度之间的相互作用机制。我们通过建立ReLU网络的宽度和深度之间的拟等价来解决这个基本问题。具体来说,我们制定了从任意ReLU网络到广泛网络和深度网络的转换,用于回归或分类,从而可以实现与原始网络基本相同的功能。也就是说,深度回归/分类ReLU网络具有广泛的等效性,反之亦然,受到任意小误差的影响。有趣的是,宽分类和深分类ReLU网络之间的准等价是民主党法律的数据驱动版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信