Properties of double Roman domination on cardinal products of graphs

A. Klobučar, A. Klobucar
{"title":"Properties of double Roman domination on cardinal products of graphs","authors":"A. Klobučar, A. Klobucar","doi":"10.26493/1855-3974.2022.44A","DOIUrl":null,"url":null,"abstract":"Double Roman domination is a stronger version of Roman domination that doubles the protection. The areas now have 0 , 1 , 2 or 3 legions. Every attacked area needs 2 legions for its defence, either their own, or borrowed from 1 or 2 neighbouring areas, which still have to keep at least 1 legion to themselves. The minimal number of legions in all areas together is equal to the double Roman domination number. In this paper we determine an upper bound and a lower bound for double Roman domination numbers on cardinal product of any two graphs. Also we determine the exact values of double Roman domination numbers on P 2  ×  G (for many types of graph G ). Also, the double Roman domination number is found for P 2  ×  P n , P 3  ×  P n , P 4  ×  P n , while upper and lower bounds are given for P 5  ×  P n and P 6  ×  P n . Finally, we will give a case study to determine the efficiency of double protection. We will compare double Roman domination versus Roman domination by running a simulation of a battle.","PeriodicalId":8402,"journal":{"name":"Ars Math. Contemp.","volume":"12 1","pages":"337-349"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ars Math. Contemp.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26493/1855-3974.2022.44A","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Double Roman domination is a stronger version of Roman domination that doubles the protection. The areas now have 0 , 1 , 2 or 3 legions. Every attacked area needs 2 legions for its defence, either their own, or borrowed from 1 or 2 neighbouring areas, which still have to keep at least 1 legion to themselves. The minimal number of legions in all areas together is equal to the double Roman domination number. In this paper we determine an upper bound and a lower bound for double Roman domination numbers on cardinal product of any two graphs. Also we determine the exact values of double Roman domination numbers on P 2  ×  G (for many types of graph G ). Also, the double Roman domination number is found for P 2  ×  P n , P 3  ×  P n , P 4  ×  P n , while upper and lower bounds are given for P 5  ×  P n and P 6  ×  P n . Finally, we will give a case study to determine the efficiency of double protection. We will compare double Roman domination versus Roman domination by running a simulation of a battle.
图的基积上的双罗马支配的性质
双重罗马统治是罗马统治的一个更强大的版本,双倍的保护。这些地区现在有0、1、2或3个军团。每个被攻击的地区都需要2个军团来防御,要么是自己的,要么是从1到2个邻近地区借来的,这些邻近地区仍然需要保留至少1个军团。所有地区的最小军团数量等于罗马统治数量的两倍。本文确定了任意两个图的基数积上的双罗马支配数的上界和下界。我们还确定了p2 × G上双罗马统治数的确切值(对于许多类型的图G)。此外,还发现了p2 × pn、p3 × pn、p3 × pn的双罗马支配数,并给出了p5 × pn和p6 × pn的上下界。最后,我们将给出一个案例研究来确定双重保护的效率。我们将通过模拟战斗来比较双罗马统治和罗马统治。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信