Yulhwa Kim, Hyungjun Kim, Daehyun Ahn, Jae-Joon Kim
{"title":"Input-Splitting of Large Neural Networks for Power-Efficient Accelerator with Resistive Crossbar Memory Array","authors":"Yulhwa Kim, Hyungjun Kim, Daehyun Ahn, Jae-Joon Kim","doi":"10.1145/3218603.3218605","DOIUrl":null,"url":null,"abstract":"Resistive Crossbar memory Arrays (RCA) have been gaining interest as a promising platform to implement Convolutional Neural Networks (CNN). One of the major challenges in RCA-based design is that the number of rows in an RCA is often smaller than the number of input neurons in a layer. Previous works used high-resolution Analog-to-Digital Converters (ADCs) to compute the partial weighted sum in each array and merged partial sums from multiple arrays outside the RCAs. However, such approach suffers from significant power consumption due to the need for high-resolution ADCs. In this paper, we propose a methodology to more efficiently construct a large CNN with multiple RCAs. By splitting the input feature map and retraining the CNN with proper initialization, we demonstrate that any CNN model can be represented with multiple arrays without using intermediate partial sums. The experimental results show that the ADC power of the proposed design is 32x smaller and the total chip power of the proposed design is 3x smaller than those of the baseline design.","PeriodicalId":20456,"journal":{"name":"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3218603.3218605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21
Abstract
Resistive Crossbar memory Arrays (RCA) have been gaining interest as a promising platform to implement Convolutional Neural Networks (CNN). One of the major challenges in RCA-based design is that the number of rows in an RCA is often smaller than the number of input neurons in a layer. Previous works used high-resolution Analog-to-Digital Converters (ADCs) to compute the partial weighted sum in each array and merged partial sums from multiple arrays outside the RCAs. However, such approach suffers from significant power consumption due to the need for high-resolution ADCs. In this paper, we propose a methodology to more efficiently construct a large CNN with multiple RCAs. By splitting the input feature map and retraining the CNN with proper initialization, we demonstrate that any CNN model can be represented with multiple arrays without using intermediate partial sums. The experimental results show that the ADC power of the proposed design is 32x smaller and the total chip power of the proposed design is 3x smaller than those of the baseline design.