Semantic Graph Neural Network: A Conversion from Spam Email Classification to Graph Classification

Sci. Program. Pub Date : 2022-01-07 DOI:10.1155/2022/6737080
Weisen Pan, Jian Li, Lisa Gao, Liexiang Yue, Yan Yang, Lingli Deng, Chao Deng
{"title":"Semantic Graph Neural Network: A Conversion from Spam Email Classification to Graph Classification","authors":"Weisen Pan, Jian Li, Lisa Gao, Liexiang Yue, Yan Yang, Lingli Deng, Chao Deng","doi":"10.1155/2022/6737080","DOIUrl":null,"url":null,"abstract":"In this study, we propose a method named Semantic Graph Neural Network (SGNN) to address the challenging task of email classification. This method converts the email classification problem into a graph classification problem by projecting email into a graph and applying the SGNN model for classification. The email features are generated from the semantic graph; hence, there is no need of embedding the words into a numerical vector representation. The method performance is tested on the different public datasets. Experiments in the public dataset show that the presented method achieves high accuracy in the email classification test against a few public datasets. The performance is better than the state-of-the-art deep learning-based method in terms of spam classification.","PeriodicalId":21628,"journal":{"name":"Sci. Program.","volume":"20 1","pages":"6737080:1-6737080:8"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sci. Program.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/6737080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this study, we propose a method named Semantic Graph Neural Network (SGNN) to address the challenging task of email classification. This method converts the email classification problem into a graph classification problem by projecting email into a graph and applying the SGNN model for classification. The email features are generated from the semantic graph; hence, there is no need of embedding the words into a numerical vector representation. The method performance is tested on the different public datasets. Experiments in the public dataset show that the presented method achieves high accuracy in the email classification test against a few public datasets. The performance is better than the state-of-the-art deep learning-based method in terms of spam classification.
语义图神经网络:从垃圾邮件分类到图分类的转换
在这项研究中,我们提出了一种名为语义图神经网络(SGNN)的方法来解决电子邮件分类的挑战性任务。该方法将电子邮件的分类问题转化为图的分类问题,通过将电子邮件投影成图,并应用SGNN模型进行分类。从语义图中生成电子邮件特征;因此,不需要将单词嵌入到数字向量表示中。在不同的公共数据集上测试了该方法的性能。在公共数据集上的实验表明,该方法在针对少数公共数据集的邮件分类测试中取得了较高的准确率。在垃圾邮件分类方面,其性能优于目前最先进的基于深度学习的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信