{"title":"Non-destructive Machine Vision System Based Rice Classification Using Ensemble Machine Learning Algorithms","authors":"Mrutyunjaya M S, H. K. S.","doi":"10.2174/2352096516666230710144614","DOIUrl":null,"url":null,"abstract":"Agriculture plays a major role in the global economy, providing food, raw materials, and jobs to billions of people and driving economic growth and poverty reduction. Rice is the most widely consumed crop domestically, making it a particularly important crop for rural populations. The exact number of rice varieties worldwide is difficult to determine as new varieties are constantly being developed and marketed.\n\n\n\nThe most common method of rice variety identification is a comparison of its physical and chemical properties to a reference collection of known types. This is a relatively quick and cost-effective approach that can be used to accurately differentiate between distinct varieties. In some cases, genetic testing may be used to confirm the identity of a variety, although this technique is more expensive and time-consuming. However, we can also utilize efficient, precise, and cost-effective digital image processing and machine vision techniques.\n\n\n\nThis study describes different types of ensemble methods, such as bagging (Decision Tree, Random Forest, Extra Tree), boosting (AdaBoost, Gradient Boost, and XGBoost), and voting classifiers to classify five different varieties of rice. Extreme Gradient Boosting (XGBoost) has achieved the highest average classification accuracy of 99.60% among all the algorithms.\n\n\n\nThe findings of the performance measurement indicated that the proposed model was successful in classifying the various varieties of rice.","PeriodicalId":43275,"journal":{"name":"Recent Advances in Electrical & Electronic Engineering","volume":"49 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Advances in Electrical & Electronic Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2352096516666230710144614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Agriculture plays a major role in the global economy, providing food, raw materials, and jobs to billions of people and driving economic growth and poverty reduction. Rice is the most widely consumed crop domestically, making it a particularly important crop for rural populations. The exact number of rice varieties worldwide is difficult to determine as new varieties are constantly being developed and marketed.
The most common method of rice variety identification is a comparison of its physical and chemical properties to a reference collection of known types. This is a relatively quick and cost-effective approach that can be used to accurately differentiate between distinct varieties. In some cases, genetic testing may be used to confirm the identity of a variety, although this technique is more expensive and time-consuming. However, we can also utilize efficient, precise, and cost-effective digital image processing and machine vision techniques.
This study describes different types of ensemble methods, such as bagging (Decision Tree, Random Forest, Extra Tree), boosting (AdaBoost, Gradient Boost, and XGBoost), and voting classifiers to classify five different varieties of rice. Extreme Gradient Boosting (XGBoost) has achieved the highest average classification accuracy of 99.60% among all the algorithms.
The findings of the performance measurement indicated that the proposed model was successful in classifying the various varieties of rice.
期刊介绍:
Recent Advances in Electrical & Electronic Engineering publishes full-length/mini reviews and research articles, guest edited thematic issues on electrical and electronic engineering and applications. The journal also covers research in fast emerging applications of electrical power supply, electrical systems, power transmission, electromagnetism, motor control process and technologies involved and related to electrical and electronic engineering. The journal is essential reading for all researchers in electrical and electronic engineering science.