STOCHASTIC SCENARIO-BASED TIME-STAGE OPTIMIZATION MODEL FOR THE LEAST EXPECTED TIME SHORTEST PATH PROBLEM

IF 1 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Lixing Yang, Xiaofei Yang, C. You
{"title":"STOCHASTIC SCENARIO-BASED TIME-STAGE OPTIMIZATION MODEL FOR THE LEAST EXPECTED TIME SHORTEST PATH PROBLEM","authors":"Lixing Yang, Xiaofei Yang, C. You","doi":"10.1142/S0218488513400023","DOIUrl":null,"url":null,"abstract":"Focusing on finding a pre-specified basis path in a network, this research formulates a two-stage stochastic optimization model for the least expected time shortest path problem, in which random scenario-based time-invariant link travel times are utilized to capture the uncertainty of the realworld traffic network. In this model, the first stage aims to find a basis path for the trip over all the scenarios, and the second stage intends to generate the remainder path adaptively when the realizations of random link travel times are updated after a pre-specified time threshold. The GAMS optimization software is introduced to find the optimal solution of the proposed model. The numerical experiments demonstrate the performance of the proposed approaches.","PeriodicalId":50283,"journal":{"name":"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems","volume":"103 1 1","pages":"17-33"},"PeriodicalIF":1.0000,"publicationDate":"2013-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/S0218488513400023","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 13

Abstract

Focusing on finding a pre-specified basis path in a network, this research formulates a two-stage stochastic optimization model for the least expected time shortest path problem, in which random scenario-based time-invariant link travel times are utilized to capture the uncertainty of the realworld traffic network. In this model, the first stage aims to find a basis path for the trip over all the scenarios, and the second stage intends to generate the remainder path adaptively when the realizations of random link travel times are updated after a pre-specified time threshold. The GAMS optimization software is introduced to find the optimal solution of the proposed model. The numerical experiments demonstrate the performance of the proposed approaches.
最小期望时间最短路径问题的随机场景时间阶段优化模型
本研究以寻找网络中预先指定的基础路径为重点,建立了最小期望时间最短路径问题的两阶段随机优化模型,该模型利用基于随机场景的时不变链路行程时间来捕捉现实交通网络的不确定性。在该模型中,第一阶段的目标是在所有场景中找到行程的基本路径,第二阶段的目标是在预先设定的时间阈值之后,当随机链路行程时间的实现更新时,自适应地生成剩余路径。引入GAMS优化软件对所提出的模型求最优解。数值实验验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
48
审稿时长
13.5 months
期刊介绍: The International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems is a forum for research on various methodologies for the management of imprecise, vague, uncertain or incomplete information. The aim of the journal is to promote theoretical or methodological works dealing with all kinds of methods to represent and manipulate imperfectly described pieces of knowledge, excluding results on pure mathematics or simple applications of existing theoretical results. It is published bimonthly, with worldwide distribution to researchers, engineers, decision-makers, and educators.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信