Sumalatha Bonthula, S. Bonthula, Ramyakrishna Pothu, R. Srivastava, Rajender Boddula, A. B. Radwan, N. Al-Qahtani
{"title":"Recent Advances in Copper-Based Materials for Sustainable Environmental Applications","authors":"Sumalatha Bonthula, S. Bonthula, Ramyakrishna Pothu, R. Srivastava, Rajender Boddula, A. B. Radwan, N. Al-Qahtani","doi":"10.3390/suschem4030019","DOIUrl":null,"url":null,"abstract":"In recent years, copper-based nanomaterials have gained significant attention for their practical applications due to their cost-effectiveness, thermal stability, selectivity, high activity, and wide availability. This review focuses on the synthesis and extensive applications of copper nanomaterials in environmental catalysis, addressing knowledge gaps in pollution management. It highlights recent advancements in using copper-based nanomaterials for the remediation of heavy metals, organic pollutants, pharmaceuticals, and other contaminants. Also, it will be helpful to young researchers in improving the suitability of implementing copper-based nanomaterials correctly to establish and achieve sustainable goals for environmental remediation.","PeriodicalId":22103,"journal":{"name":"Sustainable Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/suschem4030019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In recent years, copper-based nanomaterials have gained significant attention for their practical applications due to their cost-effectiveness, thermal stability, selectivity, high activity, and wide availability. This review focuses on the synthesis and extensive applications of copper nanomaterials in environmental catalysis, addressing knowledge gaps in pollution management. It highlights recent advancements in using copper-based nanomaterials for the remediation of heavy metals, organic pollutants, pharmaceuticals, and other contaminants. Also, it will be helpful to young researchers in improving the suitability of implementing copper-based nanomaterials correctly to establish and achieve sustainable goals for environmental remediation.