V. Gavrilenko, S. Morozov, V. Rumyantsev, M. Fadeev, V. Utochkin, N. Kulikov, A. A. Dubinov, V. Aleshkin, N. Mikhailov, S. Dvoretskii, F. Teppe, C. Sirtori
{"title":"Far and Mid IR Stimulated Emission in HgCdTe QW Heterostructures","authors":"V. Gavrilenko, S. Morozov, V. Rumyantsev, M. Fadeev, V. Utochkin, N. Kulikov, A. A. Dubinov, V. Aleshkin, N. Mikhailov, S. Dvoretskii, F. Teppe, C. Sirtori","doi":"10.1109/IRMMW-THz.2019.8874550","DOIUrl":null,"url":null,"abstract":"Stimulated emission (SE) at wavelengths up to 24 μm (12.5 THz) and down to 2.8 μm is demonstrated from HgCdTe quantum well (QW) heterostructures. Non-radiative Auger recombination is show to be mitigated due to relativistic energy spectrum. Pump-probe carrier lifetime measurements show that further increase in SE wavelength is feasible up to 60 μm (5 THz). In the short wavelength range SE down to 2.8 μm is demonstrated at temperatures available with Peltier coolers.","PeriodicalId":6686,"journal":{"name":"2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)","volume":"7 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRMMW-THz.2019.8874550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Stimulated emission (SE) at wavelengths up to 24 μm (12.5 THz) and down to 2.8 μm is demonstrated from HgCdTe quantum well (QW) heterostructures. Non-radiative Auger recombination is show to be mitigated due to relativistic energy spectrum. Pump-probe carrier lifetime measurements show that further increase in SE wavelength is feasible up to 60 μm (5 THz). In the short wavelength range SE down to 2.8 μm is demonstrated at temperatures available with Peltier coolers.