On conformally reducible pseudo-Riemannian spaces

Q3 Mathematics
Тетяна Iванiвна Шевченко, Тетяна Сергіївна Спічак, Дмитро Миколайович Дойков
{"title":"On conformally reducible pseudo-Riemannian spaces","authors":"Тетяна Iванiвна Шевченко, Тетяна Сергіївна Спічак, Дмитро Миколайович Дойков","doi":"10.15673/tmgc.v14i2.2097","DOIUrl":null,"url":null,"abstract":"\nThe present paper studies the main type of conformal reducible conformally flat spaces. \nWe prove that these spaces are subprojective spaces of Kagan, while Riemann tensor is defined by a vector defining the conformal mapping. \nThis allows to carry out the complete classification of these spaces. \nThe obtained results can be effectively applied in further research in mechanics, geometry, and general theory of relativity. \nUnder certain conditions the obtained equations describe the state of an ideal fluid and represent quasi-Einstein spaces. \nResearch is carried out locally in tensor shape. \n","PeriodicalId":36547,"journal":{"name":"Proceedings of the International Geometry Center","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Geometry Center","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15673/tmgc.v14i2.2097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

The present paper studies the main type of conformal reducible conformally flat spaces. We prove that these spaces are subprojective spaces of Kagan, while Riemann tensor is defined by a vector defining the conformal mapping. This allows to carry out the complete classification of these spaces. The obtained results can be effectively applied in further research in mechanics, geometry, and general theory of relativity. Under certain conditions the obtained equations describe the state of an ideal fluid and represent quasi-Einstein spaces. Research is carried out locally in tensor shape.
关于共形可约伪黎曼空间
本文研究了共形可约共形平面空间的主要类型。证明了这些空间是卡根的子投影空间,而黎曼张量是由一个定义保角映射的向量来定义的。这样就可以对这些空间进行完整的分类。所得结果可有效地应用于力学、几何和广义相对论的进一步研究。在一定条件下,所得方程描述了理想流体的状态并表示准爱因斯坦空间。研究是局部张量形式进行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Proceedings of the International Geometry Center
Proceedings of the International Geometry Center Mathematics-Geometry and Topology
CiteScore
1.00
自引率
0.00%
发文量
14
审稿时长
3 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信