{"title":"Classification of CAD dataset by using principal component analysis and machine learning approaches","authors":"Ali Cüvitoğlu, Z. Işik","doi":"10.1109/ICEEE2.2018.8391358","DOIUrl":null,"url":null,"abstract":"Machine-Learning (ML) methods are applied to diagnose diseases and to observe disease developments. We utilized several ML methods on Z-Alizadeh Sani dataset, which is about Coronary Artery Disease (CAD). We applied t-test for feature selection and then Principal Component Analysis (PCA) to reduce dimensionality because of small sample size. 10-fold Cross-Validation was applied to ML methods, which achieved higher than 80% average accuracy. Besides, sensitivity and specificity results are around 70% and 90%, respectively. The Artificial Neural Network reached 93% AUC, which is the best performance out of six methods. The overall results are quite promising compared to the previous study.","PeriodicalId":6482,"journal":{"name":"2018 5th International Conference on Electrical and Electronic Engineering (ICEEE)","volume":"23 1","pages":"340-343"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 5th International Conference on Electrical and Electronic Engineering (ICEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEE2.2018.8391358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
Machine-Learning (ML) methods are applied to diagnose diseases and to observe disease developments. We utilized several ML methods on Z-Alizadeh Sani dataset, which is about Coronary Artery Disease (CAD). We applied t-test for feature selection and then Principal Component Analysis (PCA) to reduce dimensionality because of small sample size. 10-fold Cross-Validation was applied to ML methods, which achieved higher than 80% average accuracy. Besides, sensitivity and specificity results are around 70% and 90%, respectively. The Artificial Neural Network reached 93% AUC, which is the best performance out of six methods. The overall results are quite promising compared to the previous study.