{"title":"Differential Privacy and Bayesian for Context-Aware Recommender Systems","authors":"Shuxing Yang, Kaili Zhu","doi":"10.4018/ijcini.20211001.oa2","DOIUrl":null,"url":null,"abstract":"Incorporate contextual information into recommendation systems can obtain better accuracy of recommendation, however, the users’ individual privacy may be disclosed by attackers. In order to resolve this problem, the authors propose a context-aware recommendation system that integrates Differential Privacy and Bayesian Network technologies (DPBCF). Firstly, the paper uses k-means algorithm to cluster items to relieve sparsity of rating matrix. Next, for the sake of protecting users’ privacy, the paper adds Laplace noises to ratings. And then adopts Bayesian Network technology to calculate the probability that users like a type of item with contextual information. At last, the authors illustrate the experimental evaluations to show that the proposed algorithm can provide a stronger privacy protection while improving the accuracy of recommendations.","PeriodicalId":43637,"journal":{"name":"International Journal of Cognitive Informatics and Natural Intelligence","volume":"41 1","pages":"1-13"},"PeriodicalIF":0.6000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cognitive Informatics and Natural Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijcini.20211001.oa2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1
Abstract
Incorporate contextual information into recommendation systems can obtain better accuracy of recommendation, however, the users’ individual privacy may be disclosed by attackers. In order to resolve this problem, the authors propose a context-aware recommendation system that integrates Differential Privacy and Bayesian Network technologies (DPBCF). Firstly, the paper uses k-means algorithm to cluster items to relieve sparsity of rating matrix. Next, for the sake of protecting users’ privacy, the paper adds Laplace noises to ratings. And then adopts Bayesian Network technology to calculate the probability that users like a type of item with contextual information. At last, the authors illustrate the experimental evaluations to show that the proposed algorithm can provide a stronger privacy protection while improving the accuracy of recommendations.
期刊介绍:
The International Journal of Cognitive Informatics and Natural Intelligence (IJCINI) encourages submissions that transcends disciplinary boundaries, and is devoted to rapid publication of high quality papers. The themes of IJCINI are natural intelligence, autonomic computing, and neuroinformatics. IJCINI is expected to provide the first forum and platform in the world for researchers, practitioners, and graduate students to investigate cognitive mechanisms and processes of human information processing, and to stimulate the transdisciplinary effort on cognitive informatics and natural intelligent research and engineering applications.