Behavior in $ L^\infty $ of convolution transforms with dilated kernels

IF 1.3 Q3 COMPUTER SCIENCE, THEORY & METHODS
W. Madych
{"title":"Behavior in $ L^\\infty $ of convolution transforms with dilated kernels","authors":"W. Madych","doi":"10.3934/mfc.2022005","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>Assuming that <inline-formula><tex-math id=\"M1\">\\begin{document}$ K(x) $\\end{document}</tex-math></inline-formula> is in <inline-formula><tex-math id=\"M2\">\\begin{document}$ L^1( {\\mathbb R}) $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M3\">\\begin{document}$ K_t(x) = t^{-1} K(x/t) $\\end{document}</tex-math></inline-formula>, and <inline-formula><tex-math id=\"M4\">\\begin{document}$ f(x) $\\end{document}</tex-math></inline-formula> is in <inline-formula><tex-math id=\"M5\">\\begin{document}$ L^\\infty( {\\mathbb R}) $\\end{document}</tex-math></inline-formula>, we study the behavior of the convolution <inline-formula><tex-math id=\"M6\">\\begin{document}$ K_t*f(x) $\\end{document}</tex-math></inline-formula> as the parameter <inline-formula><tex-math id=\"M7\">\\begin{document}$ t $\\end{document}</tex-math></inline-formula> tends to <inline-formula><tex-math id=\"M8\">\\begin{document}$ \\infty $\\end{document}</tex-math></inline-formula>. It turns out that the limit need not exist and, if it does exist, the limit is a constant independent of <inline-formula><tex-math id=\"M9\">\\begin{document}$ x $\\end{document}</tex-math></inline-formula>. Situations where the limit exists and those where it fails to exist are identified. Several issues related to this are addressed, including the multivariate case. As one application, these results provide an accessible description of the behavior of bounded solutions to the initial value problem for the heat equation.</p>","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical foundations of computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/mfc.2022005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Assuming that \begin{document}$ K(x) $\end{document} is in \begin{document}$ L^1( {\mathbb R}) $\end{document}, \begin{document}$ K_t(x) = t^{-1} K(x/t) $\end{document}, and \begin{document}$ f(x) $\end{document} is in \begin{document}$ L^\infty( {\mathbb R}) $\end{document}, we study the behavior of the convolution \begin{document}$ K_t*f(x) $\end{document} as the parameter \begin{document}$ t $\end{document} tends to \begin{document}$ \infty $\end{document}. It turns out that the limit need not exist and, if it does exist, the limit is a constant independent of \begin{document}$ x $\end{document}. Situations where the limit exists and those where it fails to exist are identified. Several issues related to this are addressed, including the multivariate case. As one application, these results provide an accessible description of the behavior of bounded solutions to the initial value problem for the heat equation.

膨胀核卷积变换在$ L^\infty $中的行为
Assuming that \begin{document}$ K(x) $\end{document} is in \begin{document}$ L^1( {\mathbb R}) $\end{document}, \begin{document}$ K_t(x) = t^{-1} K(x/t) $\end{document}, and \begin{document}$ f(x) $\end{document} is in \begin{document}$ L^\infty( {\mathbb R}) $\end{document}, we study the behavior of the convolution \begin{document}$ K_t*f(x) $\end{document} as the parameter \begin{document}$ t $\end{document} tends to \begin{document}$ \infty $\end{document}. It turns out that the limit need not exist and, if it does exist, the limit is a constant independent of \begin{document}$ x $\end{document}. Situations where the limit exists and those where it fails to exist are identified. Several issues related to this are addressed, including the multivariate case. As one application, these results provide an accessible description of the behavior of bounded solutions to the initial value problem for the heat equation.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信