{"title":"Analytic Approach for Solving System of Fractional Differential Equations","authors":"Nabaa N. Hasan, Z. John","doi":"10.23851/MJS.V32I1.929","DOIUrl":null,"url":null,"abstract":"In this paper, Sumudu transformation (ST) of Caputo fractional derivative formulae are derived for linear fractional differential systems. This formula is applied with Mittage-Leffler function for certain homogenous and nonhomogenous fractional differential systems with nonzero initial conditions. Stability is discussed by means of the system's distinctive equation.","PeriodicalId":7515,"journal":{"name":"Al-Mustansiriyah Journal of Sciences","volume":"2013 1","pages":"14-17"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Al-Mustansiriyah Journal of Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23851/MJS.V32I1.929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper, Sumudu transformation (ST) of Caputo fractional derivative formulae are derived for linear fractional differential systems. This formula is applied with Mittage-Leffler function for certain homogenous and nonhomogenous fractional differential systems with nonzero initial conditions. Stability is discussed by means of the system's distinctive equation.