Atrial Fibrillation Detection from PPG Interbeat Intervals via a Recurrent Neural Network

J. V. Zaen, Elsa Genzoni, F. Braun, P. Renevey, E. Pruvot, J. Vesin, M. Lemay
{"title":"Atrial Fibrillation Detection from PPG Interbeat Intervals via a Recurrent Neural Network","authors":"J. V. Zaen, Elsa Genzoni, F. Braun, P. Renevey, E. Pruvot, J. Vesin, M. Lemay","doi":"10.23919/CinC49843.2019.9005767","DOIUrl":null,"url":null,"abstract":"Atrial fibrillation (AF) affects millions of individuals worldwide and can lead to serious complications such as stroke or heart failure. This arrhythmia is difficult to diagnose with ambulatory electrocardiogram monitors in the early stages due to its transient nature. Recent advances in wearable photoplethysmographic (PPG) devices are promising for screening AF in large populations as they are relatively comfortable and can be worn over long periods of time. Herein, we propose a system to detect AF from PPG recordings. This system is composed of a beat detector to extract interbeat intervals and a classifier for detection. We trained the classifier on a large public database of interbeat intervals and then evaluated the whole system on PPG recordings collected during catheter ablation procedures. We achieve an accuracy of 0.986 for the detection of AF with a sensitivity and specificity of 1.0 and 0.978 respectively. These metrics compare favorably with existing systems.","PeriodicalId":6697,"journal":{"name":"2019 Computing in Cardiology (CinC)","volume":"101 1","pages":"Page 1-Page 4"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CinC49843.2019.9005767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Atrial fibrillation (AF) affects millions of individuals worldwide and can lead to serious complications such as stroke or heart failure. This arrhythmia is difficult to diagnose with ambulatory electrocardiogram monitors in the early stages due to its transient nature. Recent advances in wearable photoplethysmographic (PPG) devices are promising for screening AF in large populations as they are relatively comfortable and can be worn over long periods of time. Herein, we propose a system to detect AF from PPG recordings. This system is composed of a beat detector to extract interbeat intervals and a classifier for detection. We trained the classifier on a large public database of interbeat intervals and then evaluated the whole system on PPG recordings collected during catheter ablation procedures. We achieve an accuracy of 0.986 for the detection of AF with a sensitivity and specificity of 1.0 and 0.978 respectively. These metrics compare favorably with existing systems.
基于循环神经网络的PPG间隔房颤检测
心房颤动(AF)影响着全世界数百万人,并可导致严重的并发症,如中风或心力衰竭。由于其短暂性,这种心律失常在早期很难用动态心电图监护仪诊断。可穿戴式光电脉搏波仪(PPG)设备的最新进展有望在大量人群中筛查房颤,因为它们相对舒适,可以长时间佩戴。在此,我们提出了一个从PPG记录中检测AF的系统。该系统由用于提取间歇拍的节拍检测器和用于检测的分类器组成。我们在一个大型的心跳间隔公共数据库上训练分类器,然后根据导管消融过程中收集的PPG记录评估整个系统。我们检测AF的准确度为0.986,灵敏度和特异性分别为1.0和0.978。与现有系统相比,这些指标更有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信