{"title":"Linearization of radio-over-fiber systems using directly modulated and electro-absorption modulator integrated lasers","authors":"R. Zhu, Xiupu Zhang, Dongya Shen","doi":"10.1109/MWSYM.2016.7540322","DOIUrl":null,"url":null,"abstract":"A low-cost linearization technique is proposed to improve RF signal power and suppress third order intermodulation distortion (IMD3) in radio-over-fiber (RoF) transmission systems. A directly modulated laser (DML) and an electro-absorption modulator integrated laser (EML) in C-band are both used for optical subcarrier modulation. The IMD3s induced by the two optical subcarrier modulations are suppressed by each other through adjusting the bias voltage of the electro-absorption modulator in the EML. In our initial experiments, the spurious free dynamic range (SFDR) is improved by more than 3.5 dB and output power at 1 dB compression point is improved by 4.3 dB.","PeriodicalId":6554,"journal":{"name":"2016 IEEE MTT-S International Microwave Symposium (IMS)","volume":"114 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE MTT-S International Microwave Symposium (IMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2016.7540322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
A low-cost linearization technique is proposed to improve RF signal power and suppress third order intermodulation distortion (IMD3) in radio-over-fiber (RoF) transmission systems. A directly modulated laser (DML) and an electro-absorption modulator integrated laser (EML) in C-band are both used for optical subcarrier modulation. The IMD3s induced by the two optical subcarrier modulations are suppressed by each other through adjusting the bias voltage of the electro-absorption modulator in the EML. In our initial experiments, the spurious free dynamic range (SFDR) is improved by more than 3.5 dB and output power at 1 dB compression point is improved by 4.3 dB.